
manuscript submitted to JGR-Space Physics

Snakes on a Spaceship – An Overview of Python in
Heliophysics

A.G. Burrell1,2, A. Halford3, J. Klenzing4, R.A. Stoneback2, S. K. Morley5,
A.M. Annex6, K.M. Laundal7, A.C. Kellerman8, D. Stansby9, J. Ma10

1Space Science Division, U.S. Naval Research Laboratory, Washington, DC, USA
2William B. Hanson Center for Space Sciences, The University of Texas at Dallas, Richardson, TX, USA

3Space Sciences Department, The Aerospace Corporation, Chantilly, VA
4ITM Physics Laboratory / Code 675, Goddard Space Flight Center Greenbelt, MD, 20771

5Space Science and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
6Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, 21218

7Birkeland Centre for Space Science, University in Bergen, Norway
8Department of Earth Planetary and Space Sciences, University of California, Los Angeles, CA

9Imperial College London, London, SW7 2AZ, UK
10Facebook AI Research, Menlo Park, CA 94025

Key Points:

• A wealth of Python analysis tools exist to support space physics research
• Open source tools aid reproducible science
• Collaborative programming is essential for analysis tools to keep pace with sci-

entific progress

Corresponding author: A.G. Burrell, angeline.burrell@nrl.navy.mil

–1–

ar
X

iv
:1

90
1.

00
14

3v
1 

 [
as

tr
o-

ph
.I

M
] 

 1
 J

an
 2

01
9



manuscript submitted to JGR-Space Physics

Abstract
Computational analysis has become ubiquitous within the heliophysics community.
However, community standards for peer-review of codes and analysis have lagged be-
hind these developments. This absence has contributed to the reproducibility crisis,
where inadequate analysis descriptions and loss of scientific data have made scientific
studies difficult or impossible to replicate.

The heliophysics community has responded to this challenge by expressing a
desire for a more open, collaborative set of analysis tools. This article summarizes the
current state of these efforts and presents an overview of many of the existing Python
heliophysics tools. It also outlines the challenges facing community members who
are working towards the goal of an open, collaborative, Python heliophysics toolkit
and presents guidelines that can ease the transition from individualistic data analysis
practices to an accountable, communalistic environment.

Plain Language Summary As computers have become more powerful and bet-
ter at solving complex mathematical equations, space scientists have relied more and
more on computational tools. Community standards for peer-review of computer codes
and similar analysis tools have not kept pace with the development of these technolo-
gies. This lag in community accountability has contributed to a crisis in the scientific
literature, where it has been hard or even impossible to verify past studies.

Space scientists have responded to this challenge with a desire for open, shared
analysis tools. This article summarizes the current state of these efforts and presents
an overview of many of the existing Python analysis tools used in space physics. It
also outlines the challenges facing scientists who are working towards the goal of an
open, shared, Python space science toolkit and presents guidelines that can ease the
transition from private to public data analysis practices.

1 Introduction

The proliferation of observed and modeled data within the field of heliophysics,
a field that encompasses solar, magnetospheric, and upper atmospheric studies within
the solar system, has vastly expanded the possibilities for science investigation. These
ever expanding archives (e.g., the Coupling, Energetics and Dynamics of Atmospheric
Regions (CEDAR) Madrigal database, the National Aeronautics and Space Admin-
istration (NASA) Coordinated Data Analysis Web (CDAWeb), and the Near Earth
Space data infrastructure for e-science (ESPAS)) are accessible and searchable, but
(appropriately) do not provide many tools for identifying specific case studies or per-
forming data analysis. This absence has contributed to the reproducibility crisis, where
the results of scientific studies have been shown to be difficult or even impossible to
replicate (Peng, 2011; Gil et al., 2016). Additionally, as the heliophysics community
moves toward solving more complex interdisciplinary problems through data science
techniques, a common infrastructure capable of handling diverse data sets is required
(McGranaghan et al., 2017).

The challenges presented by large, distinct data sets and unreproducible results
may be surmounted using currently available tools and techniques. Other scientific
communities have tackled these challenges, providing an example for the heliophysics
community to follow. For example, the Incorporated Research Institutions for Seis-
mology (IRIS), provides services that include batch data downloads and searchable
lists of institution and community developed software (IRIS: Data Services, 2018).
This article presents a framework for creating, maintaining, and sharing these tools
within the space physics community. It begins in section 2 by discussing the benefits
of open source tools in general, and Python (van Rossum, 1995) in particular, to the
scientific community. Section 3 then presents a summary of currently available helio-

–2–



manuscript submitted to JGR-Space Physics

physics Python packages. Finally, a framework for future community development is
presented in section 4. The desire for an overarching framework (inspired by successful
projects in other disciplines, such as AstroPy (Astropy Collaboration et al., 2013)) has
been repeatedly expressed in space physics community meetings and workshops (e.g.,
A. Burrell et al., 2017; R. Stoneback et al., 2017).

2 Upholding Mertonian norms

The modern, Western scientific ethos can be described by the Mertonian norms
of universalism, communalism, disinterestedness, and organized skepticism (Merton,
1957). Universalism speaks to the expectation that scientific results will be evaluated
on their own merit. Communalism asserts that scientific knowledge belongs to the
entire community, not an individual or single institution. Disinterestedness espouses
the rejection of personal gain, in terms of both prestige and income. Organized skep-
ticism requires scientists to be critical of new and old ideas presented by themselves
and others in the community. These norms, intended to characterize the social aspects
of scientific culture, show a strong subscription across disciplines. The vast majority
of scientists believe, to a great extent, that these norms should be upheld (M. S. An-
derson et al., 2010). All of these norms support the adoption of the open source
philosophy, which refers to things that have been made publicly accessible for people
to use, modify, and share.

Making science and scientific analysis open source has a wide range of benefits.
It encourages organized skepticism and addresses the reproducibility crisis (Gil et
al., 2016), since all community members would have all of the necessary information
available to independently evaluate and build upon past work (Peng, 2011). With
proper citation, it brings scientific work that is currently being performed behind the
scenes into the open where it can be appropriately evaluated and recognized, reducing
opportunities for methodological plagiarism. It also reduces gatekeeping (upholding
communalism and universalism), since data and analysis tools would not be hidden
behind a paywall.

The reduction of gatekeeping has both ethical and practical benefits, as reduced
gatekeeping has been shown to increase diversity within the field (Murray et al., 2018).
Although the benefits of a diverse scientific community are obvious, research has shown
that diverse working groups produce higher quality and better cited research (Jehn et
al., 1999; M. W. Nielsen et al., 2017; AlShebli et al., 2018). These practical benefits
also improve the working lives of individual researcher, leading to improved well-being
and job satisfaction (Kanter, 2008; Choi, 2017).

Even though open science both fits with the Western scientific ethos and has been
shown to help researchers succeed through increased acknowledgement for traditionally
unacknowledged work, increased citations, media attention, funding opportunities, and
potential collaborations (McKiernan et al., 2016), there is still considerable resistance
across the community towards adopting these practices. Opponents of open source
practices in particular (as open source practices are the focus of this paper) give a range
of reasons to keep scientific analysis and data private, including plagiarism, misuse
of open science products, risks to career advancement, previous lack of publication
opportunities, giving up an edge in funding opportunities, lack of funding for open
source software in space sciences, the possibility of producing a new set of gatekeepers
with additional requirements for scientific productivity, and the capturing of academic
labor output by commercial interests (e.g., Tyfield, 2013; Longo & Drazen, 2016;
Lancaster, 2016). There is also a trend for many researchers to agree with open code
policies in principle, but not in practice (Shamir et al., 2013). The adoption of open
source software practices can be hampered by a lack of familiarity with available tools
and by concerns about short term productivity. Although the impacts of the open

–3–



manuscript submitted to JGR-Space Physics

source movement on research and individual scientists are ongoing, its early impacts
are positive (McKiernan et al., 2016, and references therein). Following the steps and
procedures outlined section 4 will help the space physics community avoid many of
the potential negative effects of open source science.

Open source science is most easily disseminated when scientists program their
tools in an open source language. While there are many options for open source
languages, this paper focuses on the applicability of Python to space science. Python
is a popular option for building scientific data analysis tools, because it is a community
driven, open source language, with a broad spectrum of well developed packages. Two
features make Python stand out as a language: the relative maturity of Python for
scientific applications and the widespread use of Python outside of academia.

Scientific programming in Python typically builds off of the NumPy (Oliphant,
2006) and SciPy (Jones et al., 2001) libraries, which form a mature foundation for
scientific applications. A rich ecosystem of software packages that build on the ‘sci-
entific stack’ of Python (NumPy and SciPy) are available; this paper describes the
current heliophysics ecosystem. In addition, legacy codes in languages like Fortran
(FORmula TRANslation, Backus (1998)) and C (Ritchie, 1996) are easily wrapped
in Python. Many of the models discussed in Section A.2 utilize this functionality to
make empirical models more widely available to the community. Python is a high-
level language that natively handles many of the required computational tasks (such
as memory management and compilation) without requiring any instruction from the
developer. This lowers the barrier for new scientific programmers and allows scientists
to focus on their algorithms and analysis rather than the details of computer program-
ming. Finally, SciPy provides the functionality to read proprietary data sets, including
those written by the Interactive Data Language (IDL, Harris Geospatial Solutions, Inc.
(2018)) and Matrix Laboratory (MATLAB, MATLAB (2018)), allowing for a smooth
transition in working environments that use legacy codes and datasets.

The widespread use of Python outside of the immediate heliophysics community
has a number of advantages. Commonly-used techniques such as signal processing
have a large support network, allowing the heliophysics community to benefit from
outside expertise. It ensures continued language development and support for new
technology, since its popularity throughout the global programming community pro-
vides the critical mass needed for such investment. Python has been broadly adopted
as a teaching language (Fangohr, 2004), allowing the heliophysics community to build
on the budding expertise of computationally literate students. Additionally, the use
of Python in our community provides students with transferable skills for industry
careers (TIOBE Index , 2018; PYPL PopularitY of Programming Language, 2018).

3 Overview of Current Packages

Heliophysics is a diverse research community, with research interests reaching
from the sun to the lower thermosphere of solar planets and methods encompassing
active experiments, ground and space-based observations, modeling, and theory. An
enterprise this vast requires a wide range of tools. Figure 1 outlines the types of Python
packages currently available and their regions of specialization, while Table 1 supplies
their licensing information, package location, and the section in appendix A that con-
tains a description of each package. Although not a complete list of heliophysics Python
packages, this figure shows the community written packages commonly used at the time
of publication, as determined through an international survey designed to gauge com-
munity involvement in collaborative space physics python projects (A. G. Burrell et
al., 2018). This survey was distributed to six space physics mailing lists and received
223 responses (195 complete and 28 partial) from heliophysicists of all career stages

–4–



manuscript submitted to JGR-Space Physics

across 28 countries and 6 continents. These project descriptions are also limited to
include only those that are all free and open-source software (FOSS).

Figure 1. Community developed heliophysics packages, grouped by field and purpose.

At the time of publication, software development within the space physics com-
munity is largely an individual effort. For example, the survey results reported that
92.9% of respondents wrote their own analysis code and only 18% contributed to com-
munity packages. This has lead to some overlap of functionality in the community
written packages.

Common areas of overlap include file handling routines, time handling utilities,
legacy model implementations, and coordinate transformations. For example, there
are three different packages that load NASA common data format (CDF) files and
three different packages that use the International Geomagnetic Reference Magnetic
Field (IGRF; Thébault, Finlay, and Toh (2015)). The first instance of overlap is a
function of early development and different focuses within heliophysics. SpacePy (see
section A.6.3) was developed first and provides full CDF library support (reading
and writing) along with many other tools for magnetospheric physics. pysatCDF
(see section A.3.3) was developed as a stand-alone python CDF reader to provide a
streamlined user experience by developers in the ionospheric community. CDFlib (see
section A.3.1) was developed recently, and contains a pure Python CDF reader and
writer (as opposed to a Python wrapper for the NASA CDF C library).

The second example of overlap is less avoidable. The IGRF is used in two of the
coordinate transformation packages (AACGMV2 in section A.4.1 and pysatMagVect in
section A.4.4), the coordinate transformations within SpacePy, and the modeled data
access and analysis package, pyglow (see section A.2.5). The IGRF implementation
within the coordinate packages and SpacePy is contained internally and it would not
be desirable for them to use a common python IGRF python package. The pyglow
package is the only one of these packages to provide the user with the direct output
from IGRF. While the pyglow implementation may not be ideal for all users, since the
package contains many other models and was not developed by the authors of IGRF,
it does provide a unique tool needed by the heliophysics community.

–5–



manuscript submitted to JGR-Space Physics

Table 1. License, description section, and location of alphabetically ordered community devel-

oped heliophysics packages. License acronyms are defined in section 4.2.

Name License Section Location

AACGMV2 MIT A.4.1 https://github.com/aburrell/aacgmv2

analysator GPL-2 A.2.1 https://github.com/fmihpc/analysator

apexpy MIT A.4.2 https://github.com/aburrell/apexpy

Astropy BSD A.6.1 http://www.astropy.org

CDFlib MIT A.3.1 https://github.com/MAVENSDC/cdflib

DaViTPy/pyDARN GPL-3.0 A.1.1 https://github.com/vtsuperdarn/davitpy

digital rf BSD A.1.2 https://github.com/MITHaystack/digital rf

GeoData MIT A.1.3 https://github.com/jswoboda/GeoData

geospacepy MIT A.6.2 https://github.com/lkilcommons/geospacepy-lite

HelioPy GPL-3.0 A.1.4 http://docs.heliopy.org

jplephem MIT A.5.4 https://pypi.org/project/jplephem

MadrigalWeb MIT A.1.5 http://cedar.openmadrigal.org

OCBpy BSD-3-Clause A.4.3 https://github.com/aburrell/ocbpy

OvationPyme LGPL-3.0 A.2.2 https://github.com/lkilcommons/OvationPyme

PlasmaPy BSD+Patent A.6.5 http://www.plasmapy.org

pyAMPS MIT A.2.3 https://github.com/klaundal/pyAMPS

PyEphem LGPL A.5.2 http://rhodesmill.org/pyephem/index.html

pyForecastTools BSD-3-Clause A.2.4 https://github.com/drsteve/PyForecastTools

pyglow MIT A.2.5 https://github.com/timduly4/pyglow

pyLTR BSD-3-Clause A.3.2 https://github.com/jma127/pyltr

pysat BSD-3-Clause A.1.6 https://github.com/rstoneback/pysat

pysatCDF BSD-3-Clause A.3.3 https://github.com/rstoneback/pysatcdf

pysatMagVect BSD-3-Clause A.4.4 https://github.com/rstoneback/pysatmagvect

SGP4 MIT A.5.3 https://pypi.org/project/sgp4

skyfield MIT A.5.4 http://rhodesmill.org/skyfield

SpacePy PSF A.6.3 https://github.com/spacepy/spacepy

SpiceyPy MIT A.5.1 https://github.com/AndrewAnnex/SpiceyPy

SunPy MIT A.6.4 https://sunpy.org

–6–



manuscript submitted to JGR-Space Physics

Apart from obvious overlap in package functionality and model implementations,
there are also instances of conceptual overlap between the packages listed in Figure 1
and Table 1. For example, the packages that focus on the data access and analysis of
observations all contain routines to read and load the observations into a python object
that may be easily used for data analysis. However, this overlap is not necessarily a
problem. Several of these packages focus on a single instrument network, allowing the
experts to deal with the specific peculiarities in that data set (e.g., DaViTpy/pyDARN
in section A.1.1). Others, such as HelioPy and pysat (section A.1.6), focus on the in-
struments in different subdisciplines of heliophysics. The packages with broader scopes
can benefit from the targeted work done by the more focused packages. pysat sets a
good example of this practice; it uses pysatCDF to read CDF files, DaViTpy/pyDARN
to read Super Dual Auroral Radar Network (SuperDARN) data, pysatMagVect for
magnetic vector transformations, pyglow for model access, SGP4 and pyEphem for
satellite orbit propagation, madrigalWeb for downloading data from Madrigal, as well
as AACGMv2 and apexpy for magnetic coordinates.

4 Towards a Heliophysics Framework

The broad scope of heliophysics, the diverse nature of heliophysics data sets, the
lack of funding for scientific software development, and the current tradition of individ-
ualism in data analysis all present challenges for the development of a useful Python
toolkit for space physics. Despite these challenges, the community has expressed a
desire to create a unified framework, similar to Astropy (described in section A.6.1),
for space science Python tools (A. Burrell et al., 2017). As the community works
towards this unified framework, there are steps that can be taken to reduce duplicated
efforts and increase the utility of existing packages. These steps include establishing a
steering committee, centralizing information about all Python heliophysics projects (as
discussed in section 4.1), providing guidelines for making these projects accessible and
connectible (as described in section 4.2), ensuring that scientists receive appropriate
recognition for their work (as discussed in section 4.3), encouraging best practices for
scientists and developers (as discussed in section 4.4), and holding scientific software
to the same standards that scientific theses are held (as discussed in section 4.5). En-
gaging in these practices will improve the trustworthiness of scientific analysis (Miller,
2018; Kanewala & Bieman, 2014) and address many of the concerns raised by oppo-
nents of the open source philosophy described in section 2.

4.1 Centralization

As with many international, interdisciplinary, collaborative efforts the best way
to centralize is online. To this end, a website has been set up to act as a hub for he-
liophysics Python packages at http://www.heliopython.org. Currently, this website
focuses on providing a place to easily locate heliophysics Python packages and commu-
nity developers. Python packages are not hosted at this website, allowing developers
to determine which hosting service best serves their own needs. To be included on
this website, package authors submit a pull request on the website’s GitHub page and
follow the guidelines (which currently include ensuring that the software is citable and
FOSS). The code should also provide a useful tool for heliophysics research, falling into
one of the categories outlined in Figure 1. Other websites also attempt to curate sub-
sets of heliophysics software (not limited to Python packages), including the CEDAR
wiki (http://cedarweb.vsp.ucar.edu/wiki/index.php/Community:Software).

Another goal of the website is to involve new community members in develop-
ment. By laying out where work has already been done, new developers can dedicate
their time to areas in need of improvement, rather than re-inventing the wheel. Increas-
ing community involvement will also help maintain active development, keep packages

–7–



manuscript submitted to JGR-Space Physics

up to date, and improve communication between scientists involved with model devel-
opment, instrument development, data analysis, and space weather products.

These community organization efforts are recent, and could benefit from fol-
lowing the example of more mature scientific community organizations, such as the
Incorporated Research Institutions for Seismology (IRIS). The IRIS consortium aims
to advance discovery, research, and education in seismology and has a large mem-
bership from research groups across the globe. Their website provides access to
data, derived data products, sponsored and community developed software, educa-
tion resources, archives of posters and presentations, annual reports, and much more
(https://www.iris.edu/hq/). The scope of involvement at IRIS is larger than that
currently envisioned by the heliophysics Python community, but following their exam-
ple and involving national and international professional organizations would increase
community involvement, encourage collaboration, and reduce instances of overlapping
software development.

4.2 Accessibility

Software licenses are used to set the terms on which the software may be used,
modified, or distributed. There are three types of software licenses: FOSS (which may
be further divided into permissive and copyleft), proprietary, and hybrid (Morin et
al., 2012). FOSS licenses are typically used by academic institutions, since they best
espouse the scientific ethos by fostering collaboration, improving reproducibility, and
aiding the peer-review process.

Permissive FOSS licenses ensure the widest possible distribution and adaptation
of the software, place the fewest restrictions on users, and ease the incorporation of
the code by others. The two most common permissive FOSS licenses are the modi-
fied BSD (Berkeley Software Development) license (The BSD License, 2018) and the
MIT (Massachusetts Institute of Technology) license (The MIT License, 2018). These
licenses allow commercial use, distribution, modification, and private use as long as
the original developers are attributed and are not held liable (there is no warranty).
Table 1 shows that 22 of the 27 packages have a permissive FOSS license (PSF, the
Python Software Foundation license is a BSD-style permissive FOSS license).

Copyleft licenses were created to assure that the benefits of FOSS are maintained
in all future derivatives of the software. The GNU (GNU’s Not Unix!) General Public
License (GPL) (Free Software Foundation, Inc., 2007) is the best-known, strong copy-
left license. These licenses explicitly describe the treatment of patents related to the
software and require that any computer code linked to the licensed software have the
same license. The remaining packages in Table 1 have either a GPL or Lesser GPL
(LGPL) license.

When choosing a software license, it is important to involve your local technology
transfer office. However, for new and existing heliophysics projects to eventually form
a cohesive framework, they must all have compatible licenses (Morin et al., 2012).
The adaptation of permissive FOSS licenses best supports this goal, and so should be
strongly considered.

Another important aspect of accessibility is making the source code publicly
available (Shamir et al., 2013). The centralization efforts described in section 4.1 can
only succeed if the community makes their code available online. Few projects have
the funds to set up and maintain an individual repository in perpetuity. Code sharing
directories such as GitHub (https://github.com) and RunMyCode.org (Stodden et
al., 2012) allow scientists to share, archive, and distribute software at no cost, while
also providing a platform for collaborative work.

–8–



manuscript submitted to JGR-Space Physics

Sometimes the analysis code for a particular project may not have a scope large
enough for its authors to justify creating a repository and DOI for it. In such cases, it
may be possible to publish source code as supplemental information in the article that
shares the results from that project. This use of supplemental information is explicitly
encouraged by some space physics journals, including the American Geophysical Union
journals (American Geophysical Union, 2018). However, other journals (including Eu-
ropean Geophysical Union journals) require that computer program code be deposited
in a repository with a persistent identifier such as a DOI (Annales Geophysicae, 2018).

4.3 Attribution

A common argument against open source data and software is the danger of
plagiarism. When dealing with Python packages, there are two aspects of attribution
that should be considered: citations and collaborations. Citations deal with provid-
ing scientists with credit for their products (whether they be data sets, software, or
theories) and collaborations deal with the ethics of building upon another person’s
work.

Citations are at the core of academic culture. Most heliophysics journals now
require citations to data sets and software, discouraging plagiarism and encouraging
communalism. Properly citing FOSS used to obtain and analyze data provides an
incentive for other scientists to provide quality FOSS. Since the advent of the Digital
Object Identifier (DOI), it is possible to cite software projects and data sets. One
service that offers DOIs for software packages is Zenodo (L. H. Nielsen & Smith,
2014). Unlike journal articles, which will not change after publication, software and
data sets often have different versions. Zenodo deals with this challenge by allowing
the developers to set up a DOI for a package in general and have separate DOIs for
different versions.

Before software DOIs, it was common to provide attribution by entering into a
collaboration with the person who created the data set that was used or provided the
analysis software. This could be an active or an in-name only collaboration, where
the work already done was acknowledge by offering a co-authorship. This is a valid
method of attribution, though it should not replace proper referencing as described
above. This type of consideration should also be extended when beginning a new
heliophysics Python project. For example, before creating a Python package for an
existing model, it is best practice to contact the model’s author. This ensures that the
resulting product is of the highest quality and makes it easier to maintain the package
when future versions of the model are released.

Another option is for project authors to write a methods paper. This follows
the tradition of instrument papers of heliophysics, and has the advantage of allowing
the project authors to describe the scope and purpose of their project, as well as
outline plans for future development. Like instrument papers, software papers may be
published in either dedicated journals (such as the Journal of Open Source Software
(Smith, 2018)) and those with a larger scope (such as the Journal of Geophysical
Research: Space Physics (American Geophysical Union, 2018)). When using software
that has a published methods papers, both the paper and the software DOI should be
cited.

Because different people are often involved in each part of a project, this ensures
that the efforts of all involved are recognized. For example, an article that uses apexpy
should cite Richmond (1995), who describes the coordinate systems, Emmert, Rich-
mond, and Drob (2010), which outlines the computational process used to smoothly
represent modified apex and quasi-dipole coordinates, and van der Meeren, Burrell,
and Laundal (2018), the Python implementation of Emmert et al. (2010)’s code. In
order to ensure that citations are correctly made, it is useful for the software develop-

–9–



manuscript submitted to JGR-Space Physics

ers to provide this information in much the same way that data and instrument teams
currently do.

4.4 Best Practices

Space scientists historically have not received formal education in computer pro-
gramming. This deficit means that most of the people developing scientific analysis
software are not aware of the best practices involved in writing code, providing docu-
mentation, and working with collaborators. This should not be a barrier to publishing
code. If it is good enough to produce reliable scientific results it is both good enough
for peer consumption and of interest to the scientific community (Barnes, 2010; Shamir
et al., 2013). However, good coding practices (like a well written paper) improve both
adaptation by others and reproducibility. To encourage more scientists to contribute
code to projects, this section provides an overview of the most relevant of these best
practices.

Best practices for coding include supporting the current standard version of the
programming language, adhering to the style guide for the programming language,
commenting, using descriptive variables, and reducing in-code duplication. At the
time of publication, Python 2 is a legacy version with limited future support (Peterson,
2008) and Python 3 is undergoing active development. It is possible to write code
compatible to both Python 2 and 3; this is the strategy that has been followed in most
of the packages described in appendix A.

Style guidelines for Python are described in Python Enhancement Proposal
(PEP) 8 (van Rossum et al., 2013). PEPs are community proposed design documents
used to inform the Python community about a new feature, process, or environment.
PEP 8 is a style guide for Python code that will help developers write programs that
are suitable for community development and incorporation into other packages.

Commenting and using descriptive variables ensure that a new user will be able to
follow the coded algorithm and find references to the literature when certain methods
or constants are used. For example, when coding up a theory or model that is published
in a journal, it is useful to cite papers with page or equation numbers as comments when
they are coded. Comments should be included for every function, defined constant,
and algorithm stage in the software. This low-level documentation prevents confusion
over units, sources of empirically determined values, and reasons why a particular
method was implemented.

Python provides two ways to comment code, through traditional source code
comments and through docstrings. Docstrings are literal strings that describe a Python
package, function, class, or method, and occur as the first statement in one of these
objects. Well written docstrings are an important element of good Python code,
since standard use dictates that they contain a summary of the object that they are
contained in. This practice allows docstrings to improve the maintainability and clarity
of different routines, as well as speed up the learning curve for new users. They are
an improvement over standard comments because they are accessible at runtime, and
so do not require the user to open up the source code. The standard conventions for
writing docstrings are described in PEP 257 (Goodger & van Rossum, 2001).

Variable names are another potential source of elucidation or confusion. Best
practice dictates using descriptive variables, or ensuring that the variable name indi-
cates what it is. For example, iterative counts are typically have either single letter,
lower case names (e.g., i, j, k) or names that reflect their purpose (e.g., counter, inum,
ion count).

–10–



manuscript submitted to JGR-Space Physics

Documentation is very important, since it ensures that changes to the code (which
will affect scientists abilities to replicate results in the future) can be easily identified.
This is vital for reproducibility as scientists move onto other projects, making their
expertise less accessible to their former collaborators and future investigators. Com-
ments and docstrings are examples of low-level documentation, providing details about
specific parts of a software package. However, their dispersion throughout a package,
lack of cohesion, and specificity make them insufficient to serve as an overarching (or
high-level) document. High-level documentation should provide general information
about the project, an installation guide, useful references to appropriate literature,
tutorials, and more. Adding to high-level documentation is an excellent way for new
users to contribute to software packages, since they have a perspective that the project
developers lack.

The SunPy project is an excellent example of documented software. They pro-
vide general information about the project, an installation guide, community and de-
veloper guidelines, and extensive downloadable tutorials (available at the URL shown
in Table 1). Not all projects will be able to support such extensive online documenta-
tion. Free online documentation is supported through a variety of websites, including
readthedocs.org. This website and other available tools often take advantage of
internal, low-level documentation by turning all the docstrings in a package into a
manual (Brandl & the Sphinx team, 2018; numpydoc maintainers, 2018), providing a
structure around which more extenstive documentation may be written.

Duplication within a package, defined as the existence of code that is either
identical to another section of code or has the same intent and structure, happens
naturally during the development of complex code. Often this happens unintentionally,
when the developer does not yet realize how useful a particular portion of the algorithm
will be. Other times this happens intentionally, with the developer deciding that the
abstraction necessary to remove the duplication will negatively impact functionality.
In general, duplication is problematic as it makes software packages harder to maintain.
Multiple instances of the same structure make algorithms more difficult to analyze and
increases the likelihood of not fixing a known bug, since finding all instances of the
bug will be more difficult (Kanewala & Bieman, 2014). Thus, best practice dictates
that in-code duplication should be removed or managed through documentation.

4.5 Rigor

Producing scientific analysis tools is an integral part of modern heliophsyics
analysis, and so should be treated with the same level of skepticism as the results that
it produces. Peer-reviewing code is one way to ensure that computational methodology
is treated with the same level of rigor as other scientific analysis methods. Code review
may be performed in-house, with collaborating developers checking each others code
(Kelly et al., 2011). It may also be performed as a part of the publishing process.
Journals dedicated to publishing and reviewing software (e.g., Smith, 2018) have review
criteria that require the implementation of many of the best practices outlined above,
including licensing, documentation, and attribution. In addition, the reviewers also
ensure that the software under consideration is functional.

To be functional, software must conclusively address a demonstrated need. In
science, finding a need for a software tool is not difficult. However, testing the ability
of the software to fill that need can be, since it requires that the developers determine
the applicable range of conditions their algorithm can support and construct tests
that convincingly demonstrate expected outcomes. Common software testing methods
include unit, integration, system, and acceptance testing.

Unit tests are an application of component testing, a method that tests the
smallest unit of an application. Python has native and third-party frameworks for

–11–



manuscript submitted to JGR-Space Physics

unit testing that allow each object in a program to be subjected to a series of tests,
ensuring it behaves as expected under a variety of operating conditions. Unit tests
are most practically implemented as code is written, discouraging in-code duplication
and reducing instances when analysis results are contaminated by software bugs. The
adoption of widespread unit testing promotes the use of short methods with outputs
that are readily verifiable.

Even when each individual component of a program is working well, problems
may still be encountered when they are brought together. Integration testing ensures
that disparate parts of a code behave as expected when they invoke each other and pass
data amongst themselves. The same frameworks that Python uses for unit testing may
also be used for integration testing, since the difference between unit and integration
testing is the scope of the tests rather then the implementation method.

System testing is a type of black-box testing that evaluates a computing system’s
compliance with the requirements of a software program. This type of testing ensures
that the program is behaving as expected in its current environment. There are many
different types of system tests, some that are commonly used by scientific developers
include installation testing (ensuring dependencies are installed and up-to-date) and
regression testing (re-running integration and unit tests to ensure the software still
performs as expected).

Acceptance testing is testing performed by users. This type of test can be per-
formed locally, but it is also common to release a package as an ‘alpha’ or ‘beta’ version
for this purpose. Acceptance testing is common in heliophysics, where the small size
of the community encourages contact between users and developers. Repositories such
as GitHub also assist with this level of testing, providing a channel for users to notify
developers of problems they encounter when using a software package.

Best practice dictates unit, integration, and system tests should be automated,
allowing an inexperienced user to run the software with confidence. There are several
commercial services that will automatically test appropriately configured repositories
(e.g., TRAVIS CI, GMBH, 2018; Appveyor Systems Inc., 2018). Many offer these
services for free to smaller, FOSS projects. These tools promote efficient use of devel-
oper time and help users determine which packages are suitable for their research and
development environment.

Despite the dangers of using untested software (e.g., Miller, 2018), scientific soft-
ware is largely untested or under tested. The reasons behind this have been attributed
to inherent difficulties in applying tests to scientific software and the culture around
scientific software development (Kanewala & Bieman, 2014). The greatest technical
challenge facing scientific software testing is the lack of an oracle (or known truth) to
test against (Kelly et al., 2011). Techniques such as metamorphic, property based,
and ‘golden run’ testing may overcome some of these testing challenges, though more
research from the software engineering community is needed (Kanewala & Bieman,
2014, and references therein).

5 Summary

The heliophysics community has expressed a desire to create a unified framework,
similar to Astropy, for space science Python tools. This article has outlined some of
the challenges facing those of us working towards this goal and presented guidelines
that can ease the transition from individualistic and proprietary coding practices to a
communalistic environment that takes advantage of each individual’s expertise. Many
of the existing tools have been outlined as well, and a central location for further
information about these Python projects has been identified.

–12–



manuscript submitted to JGR-Space Physics

Currently, much of this effort has been undertaken by individuals and small
groups with little communication between the parties. This has led to significant over-
lap between certain packages. For instance, considering only the packages summarized
in this article, there are three different CDF readers. This overlap is to be expected
at the beginning of a community development effort. There also tends to be more du-
plication of effort between projects written by different heliophysics disciplines. While
combining these packages into a single framework may be desirable, it is more prac-
tical to create packages for each subdiscipline that play well together and rely on a
common framework for truly universal tasks, such as access to file reading utilities and
the calculation of plasma parameters.

Following the best practices in software development and citations is an im-
portant step for creating an environment where collaborative software can flourish.
Although space scientists have not historically been educated in software development
and may not be aware of the best practices to follow when developing software, these
practices have immediate benefits that make their adoption advantageous. By adopt-
ing these practices in current and future work, the heliophysics community can reduce
instances of unreproducible research.

Making science and scientific analysis open source, although not always possible
due to institutional constraints, is consistent with scientific ethics and can increase the
ease and quality of scientific research. FOSS for scientific analysis makes it possible
to fully replicate past scientific analysis, reduces the monetary barrier to participa-
tion caused by propriety software, and allows all stages of scientific analysis to receive
appropriate acknowledgement. Ultimately, open source analysis leads to an increase
in diversity within the scientific community, increased creativity, and better cited re-
search.

A Description of Current Packages

The detailed descriptions provided here are intended to introduce the heliophysics
community to the range of available tools and act as a reference for the packages whose
scope are small enough that a paper dedicated to their description is not currently a
feasible option.

A.1 Observational Data Access and Analysis

Experimental and observational scientists in the heliophysics community rely on
ground and space-based data from a wide variety of instruments. Each of these data
sets have their own quirks and standards. The Python packages in this section support
data access and analysis for one or more observational data sets.

A.1.1 DaViTPy/pyDARN

SuperDARN consists of High Frequency (HF) coherent scatter radars distributed
over the northern and southern high and mid latitudes (Greenwald et al., 1995;
Chisham et al., 2007). This network monitors the plasma convection over the poles
through backscatter from field-aligned ionospheric irregularities, facilitates studies of
magnetosphere-ionosphere interactions, and provides important ionospheric specifica-
tions. The Python package pyDARN (currently provided as part of DaViTpy, but also
being re-written as a more focused Python package) provides tools to retrieve, load,
analyze, and visualize the SuperDARN backscatter (Sterne et al., 2017).

The core functionality of DaViTpy, pyDARN, sets out to provide the necessary
tools to download, read, and plot the SuperDARN data. Currently, there are routines
to read the custom-formatted SuperDARN data files that are produced from raw data

–13–



manuscript submitted to JGR-Space Physics

using the Radar Software Toolkit (RST) (SuperDARN Data Analysis Working Group.
Participating members et al., 2018), obtain radar hardware information, download the
files from one of the data mirrors (defaulting to the Virginia Tech mirror), perform some
higher level processing, and create basic plots (such as range-time-intensity plots and
maps of the radar fields of view). DaViTpy also provides coordinate conversion tools,
contains tools to perform coordinated studies with satellites and incoherent scatter
radars, has a ray tracing tool, and provides Python implementations of several useful
models. This additional functionality is useful, but will not be included in pyDARN.
Modeling and coordinate system packages are better supported by existing packages
(e.g., AACGMV2 and pyglow; described in sections A.4.1 and A.2.5, respectively),
ray tracing tools have uses beyond the SuperDARN community and so are better
developed as stand-alone packages, and coordinated studies may be performed through
packages such as pysat (described in section A.1.6), whose focus is providing a common
framework for multiple data sets and has already successfully integrated DaViTpy.

A.1.2 digital rf

The Digital Radio Frequency (Digital RF) project established a disk storage
and archival format for radio signals. It uses the Hierarchical Data Format (HDF)5,
a software package and file format that can be read by any programming language
(Koziol & Robinson, 2018), to define a self-documenting file format for radio frequency
data. The Python package, digital rf, contains routines for reading, writing, and
processing radio frequency data using this format. The digital rf project also has
C and MATLAB implementations. This package may be referenced using the URL
provided in Table 1.

A.1.3 GeoData

GeoData is a software package implemented in Python and MATLAB, that plots
and interpolates data from a variety of space physics sources. The main goal of this
package is to simplify the plotting and processing of geophysical data, specifically data
provided by the CEDAR Madrigal database. To support the data analysis, coordinate
transformations between several geographic systems are provided. The processing flow
is streamlined by outputting data into HDF5 files. This package may be referenced
using the URL provided in Table 1.

A.1.4 HelioPy

HelioPy (Stansby et al., 2018) is a Python library for heliospheric and planetary
physics, whose primary goal is to make it easy to download and import common data
sets. It uses CDFlib (see section A.3.1) to handle CDF files, and is set up to download
and ingest a wide variety of solar and satellite data.

At the time of publication this included magnetometer and Solar Wind Ion Com-
position Spectrometer (SWICS) data from the Advanced Composition Explorer (ACE,
Stone et al. (1998)) spacecraft, magnetometer, Cluster Ion Spectrometry (CIS), and
Plasma Electron And Current Experiment (PEACE) data from Cluster, particle and
magnetic field data from Helios, International Monitoring Platform (IMP), the Mag-
netospheric MultiScale (MMS) mission, Ulysses, and Wind (Acuña et al., 1995), as
well as magnetometer data from the THEMIS (Time History of Events and Macroscale
Interactions during Substorms, (Angelopoulos, 2009)), ARTEMIS (Acceleration, Re-
connection, Turbulence and Electrodynamics of the Moons Interaction with the Sun,
(Angelopoulos, 2010)), Cassini (Dougherty et al., 2004), and MESSENGER (MErcury
Surface, Space ENvironment, GEochemistry, and Ranging, (B. J. Anderson et al.,
2007)) missions. Sunspot numbers are also included, and there are plans to include
DSCOVER (Deep Space Climate Observatory), NASA/Goddard Space Flight Center

–14–



manuscript submitted to JGR-Space Physics

(GSFC) OMNI, Solar Orbiter (Müller et al., 2013), and Parker Solar Probe (Fox et
al., 2016) data.

As well as importing data, HelioPy builds upon the SpiceyPy package (described
in section A.5.1) to provide an accessible interface for performing orbital calculations.
It has also implemented a framework to perform transformations between some com-
mon coordinate systems. Future goals for HelioPy involve building upon the Astropy
package (described in section A.6.1) to provide data with physical units attached, easy
methods for transforming between a wider range of coordinate systems, and expanding
methods for importing data.

A.1.5 MadrigalWeb

The CEDAR Madrigal Database is an online resource for archiving and retrieving
many heliophysics data sets. This data can be accessed remotely using Python scripts,
through functions provided by the MadrigalWeb package. MadrigalWeb allows users
to explore the available experiments and instruments, download the data in several file
formats, calculate a range of derived parameters, and perform some instrument-specific
coordinate conversions. This package may be referenced using the URL provided in
Table 1.

A.1.6 pysat

The Python Satellite Data Analysis Toolkit (pysat) (R. A. Stoneback, Burrell,
et al., 2018; R. A. Stoneback, Spence, et al., 2018) is a high-level package intended to
form a common ground for all packages and data sources in space science. To make this
possible, pysat hides the tedious file and data handling behind a single consistent object
interface in a class object called ‘Instrument’. The Instrument object features robust
data and metadata handling, generalized data iteration, on-the-fly orbit breakdown,
and a versatile system for modifying data. These features enable the creation of
instrument independent routines that can operate on the varied dimensionality found
across space science.

Pysat is currently being used as a framework for processing the Ion Veloc-
ity Measurements (IVM) for the upcoming NASA Ionospheric Connection (ICON)
Explorer satellite (Immel et al., 2018) as well as the National Oceanic and Atmo-
spheric Administration (NOAA) Formosa Satellite (Formosat)-7/Constellation Ob-
serving System for Meteorology, Ionosphere, and Climate (COSMIC)-2 Constellation.
Several instruments from the Communication/Navigation Outage Forecasting System
(C/NOFS) satellite (the IVM, Vector Electric Field Instrument (VEFI), and Planar
Langmuir Probe (PLP)) (de la Beaujardière & C/NOFS Science Definition Team,
2004), NASA/GSFC OMNI data, SuperDARN grid data (SuperDARN Data Analy-
sis Working Group. Participating members et al., 2018), SuperMAG magnetometer
data and indices (Gjerloev, 2009), Formosat-3/COSMIC Global Positioning System
(GPS) occultation data (Liou et al., 2007), the Republic of China Satellite (ROCSAT)-
1/Formosat-1 IVM (Su et al., 1999), Dst, Kp, the Defense Meteorological Satellite Pro-
gram (DMSP) IVM (Gorney, 1987; Sun et al., 2018), the Floating Point Measurement
Unit (FPMU) on the International Space Station (ISS) (Barjatya et al., 2009), and
Thermosphere Ionosphere Mesosphere Energetics Dynamics Solar Extreme ultravio-
let Experiment (TIMED-SEE) (Woods et al., 2005) are also currently supported. The
most recent release includes a ‘Constellation’ class that allows simultaneous processing
of heterogeneous groups of Instruments. The Constellation support was developed by
undergraduate computer science students for their senior project. Upcoming versions
of pysat will feature support for both Pandas (McKinney, 2010) and xarray (Hoyer &
Hamman, 2017) data formats, improving support for multi-dimensioned data sets.

–15–



manuscript submitted to JGR-Space Physics

A.2 Modeled Data Access and Analysis

The heliophysics community uses first principles and empirical models for a va-
riety of purposes, including theoretical studies and space weather forecasts. Modeling
studies frequently face reproducibility challenges, since the data are often not made
publicly available and many models are not FOSS. The Python packages in this section
begin to address these issues by providing access to documented versions of common
heliophysics models, as well as standard analysis tools.

A.2.1 analysator

Analysator is an analysis tool developed for Vlasiator, a 6-dimensional Vlasov
theory-based simulation that focuses on fundamental plasma processes within the
near-Earth space environment (von Alfthan et al., 2014). It began as a file reader
for the Vlasiator output and has evolved to include analysis and visualization tools.
Analysator facilitates studies of particle paths, pitch angle distributions, velocity dis-
tributions, and more. More details about the capabilities of this package may be found
at the URL provided in Table 1.

A.2.2 OvationPyme

OvationPyme is a translation of the Ovation Prime model written in IDL. The
Ovation Prime model (Newell et al., 2002) predicts the total electron and ion energies
and number fluxes precipitated into the upper atmosphere, as well as the character-
istic energy of the precipitation (assuming a Maxwellian distribution). This model is
based on observations from the DMSP Special Sensor Precipitating Electron and Ion
Spectrometer (SSJ)4/5 particle detectors, which are sensitive to particles in the 30 eV
- 30 keV energy ranges (Newell et al., 1996). This package may be referenced using
the URL provided in Table 1.

A.2.3 pyAMPS

pyAMPS (Laundal & Toresen, 2018) is a Python interface for the Average Mag-
netic field and Polar current System (AMPS) model (Laundal et al., 2018). AMPS is
an empirical model of the ionospheric current system and magnetic field, which takes
inputs of the solar wind velocity, the Interplanetary Magnetic Field (IMF), the dipole
tilt, and the F10.7 index. The primary model output is the average, large-scale, iono-
spheric magnetic field disturbances at any location in near-Earth space for the selected
set of input parameters. Ionospheric currents are then derived from the magnetic field.
pyAMPS includes functions to calculate field-aligned currents, horizontal currents, and
estimates of associated ground magnetic field perturbations on a grid. It also includes
functions to calculate a time-series of model magnetic field perturbations (e.g., along
satellite tracks). The empirical model is derived from magnetic field measurements
from the Swarm (Friis-Christensen et al., 2006) and Challenging Minisatellite Payload
(CHAMP; Reigber, Lühr, and Schwintzer (2002)) satellites.

A.2.4 PyForecastTools

PyForecastTools is a Python package providing implementations of a wide variety
of metrics for model validation and forecast verification (S. Morley, 2018). The metrics
include a generic forecast skill score, comparison metrics, scale- and order-dependent
biases, a symmetric signed bias, different measures of accuracy, and common error
estimates. A key feature in this package is the inclusion of classes for contingency table
analyses with multiple methods for estimating confidence intervals on scores. These
metrics and contingency tables simplify and illuminate the model validation process,

–16–



manuscript submitted to JGR-Space Physics

making it more accessible to new users and improving the ability of the scientific
community to critically analyze model outputs and forecasts.

A.2.5 pyglow

Pyglow is a Python package wrapping multiple empirical Ionosphere-Thermosphere
models, including the Horizontal Wind Model (HWM; Hedin, Schmidlin, et al. (1993);
Hedin, Fleming, et al. (1993); Drob et al. (2008, 2015)), the International Reference
Ionosphere (IRI; Bilitza et al. (2014, 2017)), IGRF, the Naval Research Laboratory
(NRL) Mass Spectrometer Incoherent Scatter radar (MSIS) Exobase (NRLMSISE)-00
model (Picone, 2002), and an airglow model (Chartier et al., 2015). To ensure the most
up-to-date versions are used at the time of installation, pyglow retrieves the source
code (for the non-Python model implementations) from the official distribution sites
at the time of installation. Pyglow also includes a package to download and archive
the geophysical indices used to drive these models: Ap, Kp, F10.7, Dst, and AE. This
package may be referenced using the URL provided in Table 1.

A.3 Data Analysis and File Routines

Sometimes data analysis methods and file formats reach beyond disciplines. The
Python packages described in this section are used by the heliophysics community.
They have kept their scope small, though, to better serve multiple scientific fields.

A.3.1 CDFlib

CDFlib is a Python package for reading and writing CDF files. Unlike other
CDF file handling packages, CDFlib is a pure Python implementation that does not
require any compiled C or Fortran code. This makes installing the package on different
operating systems and platforms very easy. This package may be referenced using the
URL provided in Table 1.

A.3.2 pyLTR

pyLTR is a Python learning-to-rank (LTR) toolkit. LTR is a supervised machine
learning method that trains a model to rank lists of data points rather than score
single data points. This is useful for applications such as information retrieval and
data mining (Li, 2011). pyLTR provides ranking models, evaluation metrics, tools
to load and sort data, and other relevant utilities. pyLTR’s goal is to be as full-
featured as the prevailing open-source LTR library, RankLib (implemented in Java;
Arnold, Gosling, and Holmes (2000)), while being significantly easier to use. As such,
it contains built-in support for data libraries like NumPy and Pandas. This package
may be referenced using the URL provided in Table 1.

A.3.3 pysatCDF

pysatCDF (R. A. Stoneback, Depew, & Iyer, 2018) provides a Python interface
to the NASA CDF C library through an intermediate Fortran layer. To enable ease
of access, pysatCDF includes the NASA library and couples the build system for the
CDF C library with Python installation tools. This makes pysatCDF a self-contained
package that is easy to install. pysatCDF also supports the same data access mech-
anisms present in SpacePy’s CDF routines to enable cross-package interoperability
(SpacePy is described in section A.6.3). pysatCDF operates independently of pysat
(described in section A.1.6), though it also features routines designed to simplify the
integration of science data sets into pysat. For example, the NASA CDAWeb hosted
mission support within pysat relies upon pysatCDF.

–17–



manuscript submitted to JGR-Space Physics

A.4 Coordinates

Coordinate systems are used to order data in a sensible fashion. In complex and
coupled systems, there is often not a single best way to do this. As a result, there are a
plethora of coordinate systems used within heliophysics. This section outlines several
packages that focus on calculating coordinate transformations between geographic and
geomagnetic systems.

A.4.1 AACGMV2

Corrected geomagnetic (CGM) coordinates are defined in terms of the intersec-
tion between the local IGRF field line and the dipole equatorial plane. The CGM
longitude is the centered dipole longitude of this intersection [see Laundal and Rich-
mond (2017) for a review]. CGM latitude is the latitude where a dipole field line with
this radius intersects a sphere at 1 R⊕ (Earth radius). This coordinate conversion
requires magnetic field line tracing with the IGRF, and is thus relatively computation
heavy. Early implementations, based on look-up tables, only allowed for conversions of
points at ground. When this limitation was later removed, CGM coordinates became
better known as Altitude-Adjusted Corrected Geomagnetic coordinates (AACGM).

AACGM coordinates were originally developed for the purpose of comparing
ground-based radar backscatter measurements from high-latitude locations in both
hemispheres. Originally known as the Polar Anglo-American Conjugate Experiment
(PACE) geomagnetic (PGM) coordinate system (Baker & Wing, 1989), AACGM co-
ordinates preserve latitude and longitude along magnetic field lines (as specified by
IGRF). AACGMv2 is the most recent incarnation of this coordinate system, providing
coefficients that can be used to obtain AACGM coordinates between 0-2000 km above
the surface of the earth and field line tracing for higher altitudes. These coordinates
are designed to be highly accurate at polar and middle latitudes, and may be unde-
fined at the dip equator and near the South Atlantic Anomaly (Shepherd, 2014). The
Python implementation of AACGMV2 provides an interface for the C code developed
by Shepherd (2014). It allows conversions between geographic (or geodetic) coordi-
nates and AACGM latitude, longitude, and local time, and it is possible to provide
alternative versions of the AACGM coefficients (A. Burrell et al., 2018).

A.4.2 apexpy

Magnetic apex coordinates are defined in a similar way as CGM/AACGM coor-
dinates. Instead of using the intersection of the IGRF model with the dipole equatorial
plane, magnetic apex coordinates are based on the field line apex, the highest point
above the geoid. Apex longitude is defined as the centered dipole longitude of the field
line apex. Two different definitions are used for the latitude, which separate two vari-
ants of the apex coordinates: modified apex coordinates, and quasi-dipole coordinates
(Richmond, 1995).

In modified apex coordinates, the latitude is defined as the latitude where a
dipole field line with radius equal to the apex height intersects a sphere with radius
R⊕ + hR, where hR is a chosen reference height. In quasi-dipole coordinates, this
sphere is replaced by R⊕ + h, where h is the height of the point of interest. This
means that modified apex coordinates are constant along IGRF magnetic field lines,
while quasi-dipole coordinates are not. If hR or h are small, the apex coordinates
are very similar to AACGM coordinates at high latitudes. In contrast to AACGM
coordinates, apex coordinates are defined at low latitudes (above hR in the case of
modified apex coordinates).

apexpy (van der Meeren et al., 2018) provides functions to convert to and from
apex coordinates. It also includes functions to calculate base vectors, needed to do

–18–



manuscript submitted to JGR-Space Physics

vector calculus in these nonorthogonal coordinate systems (Richmond, 1995; Laundal
& Richmond, 2017), and map electric fields along magnetic field lines to different
altitudes. At apexpy’s core is a wrapper for the Fortran library described in Emmert
et al. (2010).

A.4.3 OCBpy

High latitude ionospheric processes interact directly with the magnetosphere and
the solar wind. These interactions lead to different ionospheric behaviors in the auroral
oval and the polar cap, a region where the magnetic field lines are open (connecting
to the IMF). Chisham (2017) developed a coordinate system for high latitudes that
arranges observations relative to the Open Closed field line Boundary (OCB). This was
shown to affect the formation of empirical models and statistical studies, which could
otherwise inadvertently combine observations taken in the auroral oval and polar cap.
OCBpy is a Python package that determines the location of data relative to the OCB
from AACGM coordinates and, when appropriate, scales the measurements to reflect
the influence of the cross-polar cap potential drop (A. G. Burrell & Chisham, 2018).

The coordinate transformation OCBpy performs requires the OCB location, the
data location, the data value, and knowledge of how this value is related to the iono-
spheric electric field. OCB locations are currently provided for the northern hemisphere
between May 2000 and August 2002 using observations from the Far Ultraviolet Imager
(FUV) on board the IMAGE satellite (Mende et al., 2000b, 2000a). Future develop-
ments will increase the number of OCB locations, incorporate AACGMV2 (described
in section A.4.1) to allow conversion between geographic and OCB coordinates, and
incorporate the pysat Instrument class (described in section A.1.6) to allow coordinate
transformations for a wide range of data sets.

A.4.4 pysatMagVect

The motion of plasma in the ionosphere is constrained by the anisotropic conduc-
tivity of magnetized plasma, making perpendicular motion much more difficult than
motion along magnetic field lines. To best reflect a geophysical basis for interpreting
electric fields and plasma motion, pysatMagVect calculates unit vectors in the mag-
netic field-aligned, meridional, and zonal directions. The field-aligned direction points
along the magnetic field, defined to be positive when directed from south to north. The
meridional unit vector is perpendicular to the field-aligned direction and constrained to
the meridional plane, the plane that contains the field line. At the magnetic equator,
the meridional vector is vertical and defined to be positive when directed upward. The
zonal direction completes the orthogonal set and is positive when directed towards the
East.

The vector system is calculated by field-line tracing and vector math. Refer-
ence code for IGRF in Fortran is coupled with SciPy’s Ordinary Differential Equation
numerical integrator to provide a robust and accurate field-line tracing system. The
relative locations of the field line footprints in the northern and southern hemispheres
are compared to a specified location and used to define the magnetic meridian plane.
The geomagnetic vector system may also be determined using the local magnetic field.

Under the common assumption that geomagnetic lines are equipotentials in the
ionosphere, electric fields are ‘mapped’ along field lines. This allows measurements
made anywhere along a field line to be translated to another location on the field. The
electric field values are not strictly maintained along the field line as the magnetic flux
density changes with position. pysatMagVect (R. A. Stoneback, 2018) uses field-line
tracing to determine both the geomagnetic unit vectors as well as scalars needed to
determine the changes in an electric field along a geomagnetic field line.

–19–



manuscript submitted to JGR-Space Physics

To support these and other calculations, pysatMagVect also includes coordinate
and vector transformations. Translation between Earth Centered Earth Fixed (where x
lies in equatorial plane pointing from center of Earth towards 0◦ longitude, y similarly
points towards 90◦ longitude, and z completes the system and is aligned with the
rotation axis), as well as geographic and geodetic (WGS84) systems. Vector projections
onto an ECEF or other custom basis specified in ECEF are also supported.

A.5 Orbits

Space-based data from satellites and rockets requires knowledge of orbital me-
chanics to properly determine locations. The ephemera that contain orbital informa-
tion are often difficult to read. This process becomes increasingly complex when data
from multiple satellites are used together. The Python packages in this section provide
tools for determining the orbital mechanics of natural and artificial satellites and can
be very useful for mission planning, conjunction studies, and post multi-point analysis.

A.5.1 SpiceyPy

SPICE is a geometry information system designed, built, and maintained by the
Navigation and Ancillary Information Facility (NAIF), acting under the directions of
NASA’s Planetary Science Division, to assist NASA scientists in planning and inter-
preting scientific observations from space-borne instruments. As FOSS, SPICE has
been used internationally to assist spacecraft mission concept development, data anal-
ysis, and the correlation of instruments on multiple spacecraft. SPICE components, or
kernels, have different functions that give the system its name. S stands for spacecraft
ephemeris, P stands for planet, satellite, comet, asteroid, or any other target body
ephemerids, I stands for instrument information, C stands for C-matrix (a matrix
containing orientation information), and E stands for events information (which sum-
marizes mission activities). SPICE was originally implemented in Fortran 77, but is
now officially supported in C, IDL, MATLAB, and Java.

There are several unofficial Python implementations of SPICE, one of which is
SpiceyPy (Annex et al., 2018). SpiceyPy provides a Python interface for more than
98% of C SPICE functions, a greater percentage than are made available through of-
ficially supported IDL and MATLAB interfaces, and is thoroughly tested through the
use of continuous integration services. SpiceyPy also simplifies Python to C interac-
tions by presenting an interface that simplifies C function parameters (such as array
lengths and temporary data structures) to idiomatic Python and through data type
conversions of common NumPy data types (Annex, 2017).

A.5.2 PyEphem

PyEphem is a Python package based on the XEphem C package (XEphem 3.7.7 ,
2018) that allows users to determine the position of astronomical bodies or artificial
satellites with user provided orbital elements (Rhodes, 2008). These locations are
available in equatorial, ecliptic, and galactic coordinates, as well as location in the
sky relative to known ‘landmarks’, such as a constellation. Although a database of
heliophysics spacecraft are not provided by PyEphem, they do provide orbital elements
for a wide variety of astronomical object and long-duration artificial satellites.

A.5.3 SGP4

The Simplified General Perturbations #4 (SGP4) Python package uses two line
element (TLE) data for an Earth orbiting satellite to calculate its position and ve-
locity. The purpose of the original C++ and Python implementations of SGP4 is to
foster collaboration between partners and allies by providing a high quality, FOSS

–20–



manuscript submitted to JGR-Space Physics

propagator compatible with data products produced by the United States Air Force
Space Command Joint Space Operations Center. The Python package was regularly
tested against the C++ 2010 SGP4 propagator suit to ensure that the predictions
agree within 0.1 mm. This package may be referenced using the URL provided in
Table 1.

A.5.4 skyfield and jplephem

Skyfield and jplephem are both pure Python ephemeris packages. Jplephem uses
the Jet Propulsion Laboratory (JPL) ephemeris to predict the position and velocity
of a planet or other Solar System body, producing plain three-dimensional vectors.
Skyfield builds upon jplephem, computing positions for stars, planets, and Earth-
orbiting satellites in a variety of coordinate systems. Its results are tested against
the Astronomical Almanac (produced by the United States Naval Observatory and
Her Majesty’s Nautical Almanac Office) to within 0.5 milliarcseconds. Each of these
packages may be referenced using the URLs provided in Table 1.

A.6 Multipurpose

With appropriate scope, vision, and resources, it is possible to provide a main-
tainable Python toolkit that encompasses multiple functions. The software outlined in
this section contain functionality that crosses the categories outlined in sections A.1-
A.5.

A.6.1 Astropy

The Astropy Project is a community effort to develop a core Python package
for astronomy, as well as improving the usability, interoperability, and collaboration
between other astronomical Python packages (Astropy Collaboration et al., 2013). To
this end, Astropy consists of a core package aimed at professional astronomers and
astrophysicists and secondary packages that may or may not have been created by
the core development team. The secondary (or affiliated) packages share the goals of
Astropy, and often use the core package as a base.

The core Astropy package contains data structures and transformations, file han-
dling, remote communication, computational tools, analysis utilities, and other sup-
porting tools. The data structures contain common astronomical constants, units,
and coordinates that are often useful for heliophysics research. The file handling, com-
putational, and analysis tools are commonly used within the planetary portion of the
heliophysics community, which often relies on telescope observations to observe auroral
and other ionospheric emissions.

Astropy actively supports community development through affiliated packages
with the aim of improving the availability of interpretable tools in the astronom-
ical community. A template for affiliated packages is provided to encourage new
developers. A complete list of affiliated Astropy packages is available at http://

affiliated.astropy.org/.

A.6.2 geospacepy

Geospacepy is a small library of Python functions used for space science data
analysis, and can currently be referenced using the URL provided in Table 1. It in-
cludes a set of utilities for handling different time formats, some coordinate conversions,
and plotting utilities for several standard data plots. It also downloads and reads in
OMNI data. Geospacepy uses SpacePy (described in section A.6.3) to read CDF files
and PyEphem (described in section A.5.2) for astrodynamical calculations.

–21–



manuscript submitted to JGR-Space Physics

A.6.3 SpacePy

SpacePy is a Python package that contains a set of common analysis software pri-
marily developed for the magnetospheric community (S. K. Morley et al., 2010; Morley
et al., 2011). SpacePy includes tools to read from a variety of data formats including
NASA CDF. A core feature is the ‘datamodel’ module, which provides classes that al-
low both data and metadata to be loaded and stored in a common form from a range of
sources including CDF, HDF5, and netCDF files, with full support for writing to any
of these formats. Additional functionality includes conversion between different time
systems, and an interface to the International Radiation Belt Environment Modeling
(IRBEM) library (Boscher et al., 2008) for computing terrestrial magnetic coordinate
transformations, evaluating model magnetic fields, and tracing magnetic field lines
and drift shells. SpacePy also provides a range of empirical models, statistical analysis
tools, data handling tools, and plotting convenience functions.

A suite of tools to work with simulation output from components of the Space
Weather Modeling Framework is included in the pybats module. Supported compo-
nents include the Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme (BATS-
R-US; Powell, Roe, Linde, Gombosi, and De Zeeuw (1999); De Zeeuw, Gombosi,
Groth, Powell, and Stout (2000)), Polar Wind Outflow Model (PWOM; Glocer, Tóth,
Gombosi, and Welling (2009)), Ridley Ionosphere Model (Ridley et al., 2004), Rice
Convection Model (RCM; Toffoletto, Sazykin, Spiro, and Wolf (2003)), Ring current
Atmosphere interactions Model with Self-Consistent B field (RAM-SCB; Jordanova,
Welling, Zaharia, Chen, and Thorne (2012)), and Global Ionosphere-Thermosphere
Model (GITM; Ridley, Deng, and Tóth (2006)).

SpacePy’s core development team are continuing work to improve ease of instal-
lation, ease of use, and compatibility with other packages across heliophysics. The
SpacePy project is planning a move to an environment inspired by ‘scikits’ (SciPy de-
velopers, 2018), where a streamlined core SpacePy package provides key functionality
for a broad range of applications and is supplemented by specialized packages that
build on the core of SpacePy.

A.6.4 SunPy

SunPy is a Python package for solar physics that was developed with the help
and support of the global community (SunPy Community et al., 2015). It provides
a comprehensive data analysis environment that allows researchers to carry out their
tasks with minimal effort. As a mature solar physics package, SunPy handles data ac-
quisition (from observations and models), analysis, and plotting. It includes functions
that perform common solar coordinate transformations, unit conversions, and deals
with temporal parsing. SunPy also allows local user customization of the analysis
environment.

A.6.5 PlasmaPy

PlasmaPy is a community developed and driven Python package for plasma
physics (PlasmaPy Community et al., 2018). Still at an early stage of development, it
aims to provide the common tools used within the field of plasma physics for theoretical
and experimental analysis. It currently includes access to particle data, functions to
calculate plasma parameters, dielectric tensor components, and transport coefficients.

Acknowledgments

The authors would like to acknowledge the support of all the heliophysics scientists who
have participated in the CEDAR Snakes on a Spaceship workshops, the recent Snakes
on a Spaceship survey, AGU meet-ups, and other community organization efforts. We

–22–



manuscript submitted to JGR-Space Physics

acknowledge use of NASA/GSFCs Space Physics Data Facility’s OMNIWeb service
and OMNI data by many of these Python packages (https://omniweb.gsfc.nasa
.gov/). The Python packages and data accessed by these packages may be obtained
by following the links provided in Table 1. A.G. Burrell is supported by the Chief
of Naval Research. D. Stansby is supported by the U.K. Science and Technology
Facilities Council studentship ST/N504336/1. Contributions by S.K. Morley were
performed under the auspices of the U.S. Department of Energy and partly funded by
the Laboratory Directed Research and Development program (grant 20170047DR).

References

Acuña, M. H., Ogilvie, K. W., Baker, D. N., Curtis, S. A., Fairfield, D. H., & Mish,
W. H. (1995, February). The Global Geospace Science Program and Its
Investigations. Space Science Reviews, 71 (1), 5–21. doi: 10.1007/BF00751323

AlShebli, B. K., Rahwan, T., & Woon, W. L. (2018, March). Ethnic diversity in-
creases scientific impact. ArXiv e-prints.

American Geophysical Union. (2018). Supporting information guidelines.
Retrieved 19 September 2018, from https://publications.agu.org/

author-resource-center/auxiliary-materials-guidelines/

Anderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., &
Slavin, J. A. (2007). The magnetometer instrument on MESSENGER. In The
MESSENGER mission to mercury (pp. 417–450). New York, NY: Springer,
New York, NY. doi: 10.1007/978-0-387-77214-1 12

Anderson, M. S., Ronning, E. A., De Vries, R., & Martinson, B. C. (2010). Extend-
ing the Mertonian norms: Scientists’ subscription to norms of research. The
Journal of Higher Education, 81 (3), 366–393.

Angelopoulos, V. (2009). The THEMIS mission. In The THEMIS mission (pp. 5–
34). New York, NY: Springer, New York, NY. doi: 10.1007/978-0-387-89820-9
2

Angelopoulos, V. (2010). The ARTEMIS mission. In The ARTEMIS mission (pp. 3–
25). New York, NY: Springer, New York, NY. doi: 10.1007/978-1-4614-9554-3
2

Annales Geophysicae. (2018). Manuscript preparation guidelines for authors. Re-
trieved 19 September 2018, from https://www.annales-geophysicae.net/

for authors/manuscript preparation.html

Annex, A. (2017, June). SpiceyPy, a Python Wrapper for SPICE. In Third planetary
data workshop and the planetary geologic mappers annual meeting (Vol. 1986,
p. 7081).

Annex, A., Carcich, B., Murakami, S.-y., Kulumani, S., de Val-Borro, M., Stefko,
M., . . . Seignovert, B. (2018, June). Andrewannex/spiceypy: Spiceypy
2.1.2. Retrieved from https://doi.org/10.5281/zenodo.1291631 doi:
10.5281/zenodo.1291631

Appveyor Systems Inc. (2018). Continuous integration for windows and linux. Re-
trieved 27 September 2018, from https://www.appveyor.com/

Arnold, K., Gosling, J., & Holmes, D. (2000). The java programming language (3rd
ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom,
M., Bray, E., . . . Streicher, O. (2013, October). Astropy: A community
python package for astronomy. Astronomy and Astrophysics, 558 , A33. doi:
10.1051/0004-6361/201322068

Backus, J. (1998). The history of FORTRAN I, II, and III. IEEE Annals of the His-
tory of Computing , 20 (4), 68–78.

Baker, K. B., & Wing, S. (1989, July). A new magnetic coordinate system for conju-
gate studies at high latitudes. Journal of Geophysical Research, 94 , 9139–9143.
doi: 10.1029/JA094iA07p09139

–23–



manuscript submitted to JGR-Space Physics

Barjatya, A., Swenson, C. M., Thompson, D. C., & Wright Jr., K. H. (2009, April).
Invited article: Data analysis of the floating potential measurement unit
aboard the international space station. Review of Scientific Instruments,
80 (4), 041301. doi: 10.1063/1.3116085

Barnes, N. (2010). Publish your computer code: it is good enough. Nature, 467 ,
753.

Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., & Huang,
X. (2017, February). International Reference Ionosphere 2016: From iono-
spheric climate to real-time weather predictions. Space Weather , 15 (2), 418–
429. doi: 10.1002/2016SW001593

Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., . . .
Reinisch, B. W. (2014, February). The International Reference Ionosphere
2012 − a model of international collaboration. Journal of Space Weather and
Space Climate, 4 (A07). doi: 10.1051/swsc/2014004

Boscher, D., Bourdarie, S., O’Brien, P., & Guild, T. (2008, October 13). IRBEM-
LIB download. Retrieved 5 July 2018, from https://sourceforge.net/

projects/irbem/

Brandl, G., & the Sphinx team. (2018). Overview − sphinx 1.8.0+ documentation.
Retrieved 2 July 2018, from http://www.sphinx-doc.org/en/master/

The BSD license. (2018). Retrieved 16 June 2018, from https://opensource.org/

licenses/bsd-license.php

Burrell, A., Kellerman, A., Halford, A., Ireland, J., Fadden, J., Piker, C., . . . Za-
wdie, K. (2017, December 14). Fall agu python meet up. Private Communica-
tion.

Burrell, A., van der Meeren, C., & Laundal, K. M. (2018, May). aburrell/aacgmv2:
v2.4.2. Retrieved from https://doi.org/10.5281/zenodo.1250727 doi: 10
.5281/zenodo.1250727

Burrell, A. G., & Chisham, G. (2018, April). aburrell/ocbpy: Beta Release. Re-
trieved from https://doi.org/10.5281/zenodo.1217177 doi: 10.5281/
zenodo.1217177

Burrell, A. G., Klenzing, J., & Stoneback, R. A. (2018, June 25). Python for
space science, snakes on a spaceship: The return of the python. Retrieved 27
August 2018, from http://cedarweb.vsp.ucar.edu/wiki/images/c/c8/

Snakes welcome.pdf

Chartier, A. T., Makela, J. J., Liu, H., Bust, G. S., & Noto, J. (2015). Modeled and
observed equatorial thermospheric winds and temperatures. Journal of Geo-
physical Research: Space Physics, 120 (7), 5832-5844. Retrieved from https://

agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JA020921 doi:
10.1002/2014JA020921

Chisham, G. (2017, January). A new methodology for the development of highlat-
itude ionospheric climatologies and empirical models. Journal of Geophysical
Research: Space Physics, 122 , 932–947. doi: 10.1002/2016JA023235

Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott,
A., . . . Walker, A. D. M. (2007, May). A decade of the Super Dual Auro-
ral Radar Network (SuperDARN): scientific achievements, new techniques
and future directions. Surveys in Geophysics, 28 (1), 33–109. Retrieved
from http://link.springer.com/10.1007/s10712-007-9017-8 doi:
10.1007/s10712-007-9017-8

Choi, S. (2017). Workforce diversity and job satisfaction of the majority and the mi-
nority: Analyzing the asymmetrical effects of relational demography on whites
and racial/ethnic minorities. Review of Public Personnel Administration,
37 (1), 84-107. Retrieved from https://doi.org/10.1177/0734371X15623617

doi: 10.1177/0734371X15623617

de la Beaujardière, O., & C/NOFS Science Definition Team. (2004). C/NOFS: A
mission to forecast scintillations. Journal of Atmospheric and Solar-Terrestrial

–24–



manuscript submitted to JGR-Space Physics

Physics, 66 (17), 1573–1591. doi: 10.1016/j.jastp.2004.07.030

De Zeeuw, D. L., Gombosi, T. I., Groth, C. P. T., Powell, K. G., & Stout, Q. F.
(2000, Dec). An adaptive mhd method for global space weather simu-
lations. IEEE Transactions on Plasma Science, 28 (6), 1956-1965. doi:
10.1109/27.902224

Dougherty, M. K., Kellock, S., Southwood, D. J., Balogh, A., Smith, E. J., Tsuru-
tani, B. T., . . . Cowley, S. W. H. (2004). The Cassini magnetic field investi-
gation. In The cassini-huygens mission (pp. 331–383). Dordrecht: Springer,
Dordrecht. doi: 10.1007/978-1-4020-2774-1 4

Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G., Skinner,
W., . . . Vincent, R. A. (2008, December). An empirical model of the earth’s
horizontal wind fields: HWM07. Journal of Geophysical Research, 113 (A12),
A12304. doi: 10.1029/2008JA013668

Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde,
M., . . . Klenzing, J. H. (2015, July). An update to the Horizontal Wind
Model (HWM): The quiet time thermosphere. Earth and Space Science, 2 (7),
301–319. doi: 10.1002/2014EA000089

Emmert, J. T., Richmond, A. D., & Drob, D. P. (2010, August). A computationally
compact representation of Magnetic-Apex and Quasi-Dipole coordinates with
smooth base vectors. Journal of Geophysical Research, 115 , A08322. doi:
10.1029/2010JA015326

Fangohr, H. (2004). A comparison of c, matlab, and python as teaching languages
in engineering. In M. Bubak, G. D. van Albada, P. M. A. Sloot, & J. Dongarra
(Eds.), Computational science - iccs 2004 (pp. 1210–1217). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A.,
. . . Szabo, A. (2016, Dec). The Solar Probe Plus Mission: Humanity’s
First Visit to Our Star. Space Science Reviews, 204 (1-4), 7–48. Retrieved
from http://link.springer.com/10.1007/s11214-015-0211-6 doi:
10.1007/s11214-015-0211-6

Free Software Foundation, Inc. (2007, Jun 29). The GPL license. Retrieved 16 June
2018, from https://opensource.org/licenses/GPL-3.0

Friis-Christensen, E., Lühr, H., & Hulot, G. (2006, Apr 01). Swarm: A constella-
tion to study the earth’s magnetic field. Earth, Planets and Space, 58 (4), 351–
358. Retrieved from https://doi.org/10.1186/BF03351933 doi: 10.1186/
BF03351933

Gil, Y., David, C. H., Demir, I., Essawy, B. T., Fulweiler, R. W., Goodall, J. L., . . .
Yu, X. (2016). Toward the geoscience paper of the future: Best practices for
documenting and sharing research from data to software to provenance. Earth
and Space Science, 3 (10), 388-415. doi: 10.1002/2015EA000136

Gjerloev, J. W. (2009, July). A Global GroundBased Magnetometer Initiative.
EOS, Transactions American Geophysical Union, 90 (27), 230–231. doi:
10.1029/2009EO270002

Glocer, A., Tóth, G., Gombosi, T., & Welling, D. (2009). Modeling ionospheric out-
flows and their impact on the magnetosphere, initial results. Journal of Geo-
physical Research: Space Physics, 114 (A5). doi: 10.1029/2009JA014053

Goodger, D., & van Rossum, G. (2001, June 13). PEP 257 − Docstring conventions.
Retrieved 19 September 2018, from https://www.python.org/dev/peps/

pep-0257/

Gorney, D. J. (1987, April). U.S. National Report to the International Union of
Geodesy and Geophysics: U.S. progress in auroral research: 1983–1986. Re-
views of Geophysics, 25 (3), 555–569. doi: 10.1029/RG025i003p00555

Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas,
E. C., . . . Yamagashi, H. (1995). DARN/SUPERDARN. Space Science
Reviews, 71 (1-4), 761–796. doi: 10.1007/BF00751350

–25–



manuscript submitted to JGR-Space Physics

Harris Geospatial Solutions, Inc. (2018). Documentation center [harris geospa-
tial docs center]. Retrieved 6 July 2018, from http://www.harrisgeospatial

.com/docs/whatsnew.html

Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark,
R. R., . . . Vincent, R. A. (1993). Empirical wind model for the middle and
lower atmosphere – part 2: Local time variations (NASA Technical Memoran-
dum No. 104592). Retrieved from https://ntrs.nasa.gov/archive/nasa/

casi.ntrs.nasa.gov/19940017389.pdf

Hedin, A. E., Schmidlin, F. J., Fleming, E. L., Avery, S. K., Manson, A. H., &
Franke, S. J. (1993). Empirical wind model for the middle and lower at-
mosphere – part 1: Local time average (NASA Technical Memorandum
No. 104581). Retrieved from https://ntrs.nasa.gov/archive/nasa/

casi.ntrs.nasa.gov/19930015971.pdf

Hoyer, S., & Hamman, J. (2017, April). xarray: N-D labeled Arrays and Datasets in
Python. Journal of Open Research Software, 5 (1), 304. doi: 10.5334/jors.148

Immel, T. J., England, S. L., Mende, S. B., Heelis, R. A., Englert, C. R., Edelstein,
J., . . . Sirk, M. M. (2018, December). The Ionospheric Connection Explorer
Mission: Mission goals and design. Space Science Reviews, 214 (1), 13. doi:
10.1007/s11214-017-0449-2

Iris: Data services. (2018). Retrieved 30 August 2018, from https://http://ds

.iris.edu/ds/

Jehn, K. A., Northcraft, G. B., & Neale, M. A. (1999). Why differences make
a difference: A field study of diversity, conflict, and performance in work-
groups. Administrative Science Quarterly , 44 (4), 741–763. Retrieved from
http://www.jstor.org/stable/2667054

Jones, E., Oliphant, T., Peterson, P., & the SciPy developers. (2001). SciPy: Open
source scientific tools for Python. Retrieved 22 June 2018, from http://www

.scipy.org/

Jordanova, V. K., Welling, D. T., Zaharia, S. G., Chen, L., & Thorne, R. M.
(2012). Modeling ring current ion and electron dynamics and plasma
instabilities during a high-speed stream driven storm. Journal of Geo-
physical Research: Space Physics, 117 (A9). Retrieved from https://

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JA017433 doi:
10.1029/2011JA017433

Kanewala, U., & Bieman, J. M. (2014, oct). Testing scientific software: A systematic
literature review. Information and Software Technology , 56 (10), 1219–1232.
doi: 10.1016/j.infsof.2014.05.006

Kanter, R. (2008). Men and women of the corporation: New edition. Basic Books.
Retrieved from https://books.google.com/books?id=B-5GztW4IZQC

Kelly, D., Smith, S., & Meng, N. (2011). Software engineering for scientists. Compu-
tational Science and Engineering , 13 (5), 7–11.

Koziol, Q., & Robinson, D. (2018, Mar). HDF5. [Computer Software] https://dx
.doi.org/10.11578/dc.20180330.1. Retrieved from https://dx.doi.org/10

.11578/dc.20180330.1

Lancaster, A. (2016, 28). Open science and its discontents. Retrieved 17 Au-
gust 2018, from http://ronininstitute.org/open-science-and-its

-discontents/1383/

Laundal, K. M., Finlay, C. C., Olsen, N., & Reistad, J. P. (2018). Solar wind and
seasonal influence on ionospheric currents from swarm and champ measure-
ments. Journal of Geophysical Research: Space Physics, 123 (5), 4402-4429.
Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1029/2018JA025387 doi: 10.1029/2018JA025387

Laundal, K. M., & Richmond, A. D. (2017). Magnetic Coordinate Systems. Space
Sci. Rev.. doi: 10.1007/s11214-016-0275-y

–26–



manuscript submitted to JGR-Space Physics

Laundal, K. M., & Toresen, M. (2018). pyAMPS.
https://github.com/klaundal/pyAMPS. doi: 10.5281/zenodo.1182930

Li, H. (2011). A short introduction to Learn to Rank. IEICE Trans. Inf. & Syst.,
E94-D(10), 1854–1862.

Liou, Y.-A., Pavelyev, A. G., Liu, S.-F., Pavelyev, A. A., Yen, N., Huang, C. Y., &
Fong, C.-J. (2007, November). FORMOSAT-3/COSMIC GPS radio occul-
tation mission: Preliminary results. IEEE Transactions on Geoscience and
Remote Sensing , 45 , 3813–3826. doi: 10.1109/TGRS.2007.903365

Longo, D. L., & Drazen, J. M. (2016). Data sharing. The New England Journal of
Medicine, 374 , 276–277. doi: 10.1056/NEJMe1516564

MATLAB. (2018). version 9.4 (R2018a). Natick, Massachusetts: The MathWorks
Inc.

McGranaghan, R. M., Bhatt, A., Matsuo, T., Mannucci, A. J., Semeter, J. L., &
Datta Barua, S. (2017, December). Ushering in a new frontier in geospace
through data science. Journal of Geophysical Research: Space Physics,
122 (12), 12,586–12,590. doi: 10.1002/2017JA024835

McKiernan, E. C., Bourne, P. E., Brown, C. T., Buck, S., Kenall, A., Lin, J., . . .
Yarkoni, T. (2016). How open science helps researchers succeed. eLIFE ,
e16800. doi: 10.7554/elife.16800.001

McKinney, W. (2010). Data structures for statistical computing in python. In
S. van der Walt & J. Millman (Eds.), Proceedings of the 9th python in science
conference (p. 51-56).

Mende, S. B., Heetderks, H., Frey, H. U., Lampton, M., Geller, S. P., Abiad, R., . . .
Trondsen, T. (2000a, January). Far ultraviolet imaging from the IMAGE
spacecraft. 2. wideband FUV imaging. Space Science Reviews, 91 (1), 271–285.
doi: 10.1007/978-94-011-4233-5 9

Mende, S. B., Heetderks, H., Frey, H. U., Stock, J. M., Lampton, M., Geller, S. P.,
. . . Lauche, H. (2000b). Far ultraviolet imaging from the IMAGE spacecraft.
3. spectral imaging of Lyman-alpha and OI 135.6 nm. Space Science Reviews,
91 (1), 287–381. doi: 10.1007/978-94-011-4233-5 10

Merton, R. (1957). Social theory and social structure (Rev. and enl. ed.). Glencoe:
Free Press.

Miller, G. (2018). A scientist’s nightmare: Software problem leads to five retractions.
Science, 314 (5807), 1856–1857. doi: 10.1126/science.314.5807.1856

The MIT license. (2018). Retrieved 16 June 2018, from https://opensource.org/

licenses/mit-license.php

Morin, A., Urban, J., & Sliz, P. (2012, July). A Quick Guide to Software Licensing
for the Scientist-Programmer. PLOS Computational Biology , 8 (7), e1002598.
doi: 10.1371/journal.pcbi.1002598

Morley, S. (2018, June). drsteve/PyForecastTools: PyForecastTools: Version 1.0.1.
Retrieved from https://doi.org/10.5281/zenodo.1299389 doi: 10.5281/
zenodo.1299389

Morley, S. K., Koller, J., Welling, D. T., Larsen, B. A., Henderson, M. G., & Niehof,
J. T. (2011). Spacepy − A Python-based library of tools for the space sciences.
In Proceedings of the 9th Python in science conference (SciPy 2010). Austin,
TX.

Morley, S. K., Welling, D. T., Koller, J., Larsen, B. A., & Henderson, M. G. (2010,
Jan). Spacepy - a python-based library of tools for the space sciences.

Müller, D., Marsden, R. G., St. Cyr, O. C., & Gilbert, H. R. (2013, Jul). Solar Or-
biter. Solar Physics, 285 (1-2), 25–70. Retrieved from http://link.springer

.com/10.1007/s11207-012-0085-7 doi: 10.1007/s11207-012-0085-7

Murray, D., Siler, K., Lariviére, V., Chan, W. M., Collings, A. M., Raymond, J., &
Sugimoto, C. R. (2018). Gender and international diversity improves equity in
peer review. bioRxiv . doi: 10.1101/400515

–27–



manuscript submitted to JGR-Space Physics

Newell, P. T., Lyons, K. M., & Meng, C.-I. (1996, February). A large survey of elec-
tron acceleration events. Journal of Geophysical Research, 101 (A), 2599–2614.
doi: 10.1029/95JA03147

Newell, P. T., Sotirelis, T., Ruohoniemi, J. M., Carbary, J. F., Liou, K., Skura,
J. P., . . . Rich, F. J. (2002). Ovation: Oval variation, assessment, track-
ing, intensity, and online nowcasting. Annales Geophysicae, 20 (7), 1039–
1047. Retrieved from https://www.ann-geophys.net/20/1039/2002/ doi:
10.5194/angeo-20-1039-2002

Nielsen, L. H., & Smith, T. (2014, March). Zenodo overview. Retrieved from
https://doi.org/10.5281/zenodo.8428 doi: 10.5281/zenodo.8428

Nielsen, M. W., Alegria, S., Börjeson, L., Etzkowitz, H., Falk-Krzesinski, H. J.,
Joshi, A., . . . Schiebinger, L. (2017). Opinion: Gender diversity leads to
better science. Proceedings of the National Academy of Sciences, 114 (8),
1740–1742. Retrieved from http://www.pnas.org/content/114/8/1740 doi:
10.1073/pnas.1700616114

numpydoc maintainers. (2018, June 16). numpydoc − Numpy’s Sphinx exten-
tions. Retrieved 2 July 2018, from https://numpydoc.readthedocs.io/en/

latest/

Oliphant, T. E. (2006). Guide to NumPy. Trelgol Publishing.

Peng, R. D. (2011). Reproducible research in computational science. Science,
334 (6060), 1226–1227. Retrieved from http://science.sciencemag.org/

content/334/6060/1226 doi: 10.1126/science.1213847

Peterson, B. (2008, November 3). PEP 373 − Python 2.7 release schedule. Retrieved
28 September 2018, from https://www.python.org/dev/peps/pep-0373/

Picone, J. M. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical
comparisons and scientific issues. Journal of Geophysical Research, 107 (A12),
1468–SIA 15–16. doi: 10.1029/2002JA009430

PlasmaPy Community, Murphy, N. A., Leonard, A. J., Stańczak, D., Kozlowski,
P. M., Langendorf, S. J., . . . Huang, Y.-M. (2018, April). PlasmaPy: an open
source community-developed python package for plasma physics. Retrieved from
https://doi.org/10.5281/zenodo.1238132 doi: 10.5281/zenodo.1238132

Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & De Zeeuw, D. L.
(1999). A solution-adaptive upwind scheme for ideal magnetohydrodynam-
ics. Journal of Computational Physics, 154 (2), 284 - 309. Retrieved from
http://www.sciencedirect.com/science/article/pii/S002199919996299X

doi: https://doi.org/10.1006/jcph.1999.6299

PYPL PopularitY of programming language. (2018, September). Retrieved 14
September 2018, from http://pypl.github.io/PYPL.html

Reigber, C., Lühr, H., & Schwintzer, P. (2002). Champ mission status. Ad-
vances in Space Research, 30 (2), 129 - 134. Retrieved from http://

www.sciencedirect.com/science/article/pii/S0273117702002764 doi:
https://doi.org/10.1016/S0273-1177(02)00276-4

Rhodes, B. C. (2008). Pyephem home page. Retrieved 21 June 2018, from http://

rhodesmill.org/pyephem/index.html

Richmond, A. D. (1995). Ionospheric electrodynamics using magnetic apex coordi-
nates. Journal of Geomagnetism and Geoelectricity , 47 (2), 191–212.

Ridley, A. J., Deng, Y., & Tóth, G. (2006). The global ionosphere–thermosphere
model. Journal of Atmospheric and Solar-Terrestrial Physics, 68 (8), 839 -
864. Retrieved from http://www.sciencedirect.com/science/article/pii/

S1364682606000071 doi: https://doi.org/10.1016/j.jastp.2006.01.008

Ridley, A. J., Gombosi, T. I., & DeZeeuw, D. L. (2004). Ionospheric control of the
magnetosphere: conductance. Annales Geophysicae, 22 (2), 567–584. Retrieved
from https://www.ann-geophys.net/22/567/2004/ doi: 10.5194/angeo-22
-567-2004

–28–



manuscript submitted to JGR-Space Physics

Ritchie, D. M. (1996). History of programming languages—ii. In T. J. Bergin Jr.
& R. G. Gibson Jr. (Eds.), (pp. 671–698). New York, NY, USA: ACM. Re-
trieved from http://doi.acm.org/10.1145/234286.1057834 doi: 10.1145/
234286.1057834

SciPy developers. (2018). SciPy: Open source scientific tools for Python. Retrieved 6
July 2018, from https://www.scipy.org/scikits.html

Shamir, L., Wallin, J. F., Allen, A., Berriman, B., Teuben, P., Nemiroff, R. J., . . .
DuPrie, K. (2013, 2). Practices in source code sharing in astrophysics. Astron-
omy and Computing , 1 , 54–58. doi: 10.1016/j.ascom.2013.04.001

Shepherd, S. G. (2014, September). Altitude−adjusted corrected geomagnetic coor-
dinates: Definition and functional approximations. Journal of Geophysical Re-
search: Space Physics, 119 , 7501–7521. doi: 10.1002/2014JA020264

Smith, A. (Ed.). (2018). The journal of open source software. Retrieved 27 Septem-
ber 2018, from http://joss.theoj.org/

Stansby, D., Yatharth, & Shaw, S. (2018, June). heliopython/heliopy: Heliopy 0.5.2.
Retrieved from https://doi.org/10.5281/zenodo.1009079 doi: 10.5281/
zenodo.1291945

Sterne, K., Burrell, A., Reimer, A., Schmidt, M., Kotyk, K., DeLarquier, S., . . .
Meeren, C. (2017, December). AACGM v2 upgrade, convection map up-
dates. Retrieved from https://doi.org/10.5281/zenodo.1288637 doi:
10.5281/zenodo.1288637

Stodden, V., Hurlin, C., & Perignon, C. (2012). RunMyCode.org: a novel dissemi-
nation and collaboration platform for executing published. SSRN . Retrieved
from https://ssrn.com/abstract=2147710 doi: 10.2139/ssrn.2147710

Stone, E. C., Frandsen, A. M., Mewaldt, R. A., Christian, E. R., Margolies, D.,
Ormes, J. F., & Snow, F. (1998). The Advanced Composition Explorer. Space
Science Reviews, 86 (1-4), 1–22. doi: 10.1023/A:1005082526237

Stoneback, R., Burrell, A., & Klenzing, J. (2017, June 25). Snakes on a spaceship:
2 fast 2 furious. Retrieved 30 August 2018, from http://cedarweb.vsp.ucar

.edu/wiki/index.php/2017 Workshop:Python for Space Science

Stoneback, R. A. (2018, July). pysatmagvect: Nasa icon ion velocity meter support
(version 0.2.0). Retrieved from https://doi.org/10.5281/zenodo.1299374

doi: 10.5281/zenodo.1299374

Stoneback, R. A., Burrell, A. G., Klenzing, J., & Depew, M. D. (2018, May 9).
Pysat: Python satellite data analysis toolkit. Journal of Geophysical Research:
Space Physics, 123 . Retrieved from https://agupubs.onlinelibrary.wiley

.com/doi/abs/10.1029/2018JA025297 doi: 10.1029/2018JA025297

Stoneback, R. A., Depew, M. D., & Iyer, G. S. (2018, April). pysatcdf: Win-
dows compatibility and improved pysat meta handling (version 0.3.0). Re-
trieved from https://doi.org/10.5281/zenodo.1217181 doi: 10.5281/
zenodo.1217181

Stoneback, R. A., Spence, C., Depew, M. D., Hargrave, N., Burrell, A. G., Klen-
zing, J., . . . Lee, J. (2018, July). rstoneback/pysat: Constellation Sup-
port, Satellite Simulations, and DMSP IVM Support. Retrieved from
https://doi.org/10.5281/zenodo.1306979 doi: 10.5281/zenodo.1306979

Su, S., Yeh, H. C., Heelis, R. A., Wu, J., Yang, S. C., Lee, L., & Chen, H. L. (1999).
The ROCSAT1 preliminary results: Lowlatitude ionospheric plasma and flow
variations. Terr. Atmos. Oceanic Sci., 10 (4), 787–804.

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018, Jan-
uary). A Review of Global Precipitation Data Sets: Data Sources, Estimation,
and Intercomparisons. Reviews of Geophysics, 56 (1), 79–107. doi: 10.1002/
2017RG000574

SunPy Community, T., Mumford, S. J., Christe, S., Pérez-Suárez, D., Ireland,
J., Shih, A. Y., . . . Kirk, M. S. (2015, January). SunPy − Python for
solar physics. Computational Science and Discovery , 8 (1), 014009. doi:

–29–



manuscript submitted to JGR-Space Physics

10.1088/1749-4699/8/1/014009
SuperDARN Data Analysis Working Group. Participating members, Thomas, E. G.,

Ponomarenko, P. V., Bland, E. C., Burrell, A. G., Kotyk, K., . . . Walach, M.-
T. (2018, January). Superdarn radar software toolkit (rst) 4.1. Retrieved from
https://doi.org/10.5281/zenodo.1143675 doi: 10.5281/zenodo.1143675

Thébault, E., Finlay, C., & Toh, H. (2015, Sep 23). Special issue “international ge-
omagnetic reference field—the twelfth generation”. Earth, Planets and Space,
67 (1), 158. Retrieved from https://doi.org/10.1186/s40623-015-0313-0

doi: 10.1186/s40623-015-0313-0
TIOBE Index. (2018, June). Retrieved 18 June 2018, from https://www.tiobe

.com/tiobe-index/

Toffoletto, F., Sazykin, S., Spiro, R., & Wolf, R. (2003, Apr 01). Inner mag-
netospheric modeling with the rice convection model. Space Science Re-
views, 107 (1), 175–196. Retrieved from https://doi.org/10.1023/A:

1025532008047 doi: 10.1023/A:1025532008047
TRAVIS CI, GMBH. (2018). Travis CI − Test and Deploy with Confidence. Re-

trieved 27 September 2018, from https://travis-ci.org/

Tyfield, D. (2013, Nov). Transition to science 2.0: “remoralizing” the economy of
science. Spontaneous Generations: A Journal for the History and Philosophy of
Science, 7 (1), 29–48. doi: 10.4245/sponge.v7i1.19664

van der Meeren, C., Burrell, A. G., & Laundal, K. M. (2018, April). apexpy: Apexpy
version 1.0.3. Retrieved from https://doi.org/10.5281/zenodo.1214207

doi: 10.5281/zenodo.1214207
van Rossum, G. (1995, May). Python tutorial (Tech. Rep. No. CS-R9526). Amster-

dam: Centrum voor Wiskunde en Informatica (CWI).
van Rossum, G., Warsaw, B., & Coghlan, N. (2013, August 1). PEP 8 − Style guide

for Python code. Retrieved 2 July 2018, from https://www.python.org/dev/

peps/pep-0008/

von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen, I., Sandroos,
A., & Palmroth, M. (2014, December). Vlasiator: First global hybrid-Vlasov
simulations of Earth’s foreshock and magnetosheath. Journal of Atmospheric
and Solar-Terrestrial Physics, 120 , 24–35. doi: 10.1016/j.jastp.2014.08.012

Woods, T. N., Eparvier, F. G., Bailey, S. M., Chamberlin, P. C., Lean, J., Rottman,
G. J., . . . Woodraska, D. L. (2005, January). Solar EUV Experiment (SEE):
Mission overview and first results. Journal of Geophysical Research, 110 ,
A01312. doi: 10.1029/2004JA010765

Xephem 3.7.7. (2018, March 23). Retrieved 21 June 2018, from http://

www.clearskyinstitute.com/xephem/

–30–


