Advanced OpenVPN Configuration

by Markus Feilner

This article deals with few features of advanced OpenVPN configuration like protecting clients through a
firewall behind a tunnel, distributed compilation through VPN tunnels with distce, and Authentication
methods.

Individual Firewall Rules for Connecting Clients
One striking possibility Open VPN offers is a setup where:

* An OpenVPN machine acts as a server that protects the company's network, admitting access
for OpenVPN clients.

* The clients are automatically assigned IPs by the server.

* The clients are equipped with certificates, and identified and authorized by
these certificates.

The scripting parameter learn-address in the server's OpenVPN configuration file will have the server
execute a script whenever an authorized client connects to the VPN and is assigned an address. This
parameter takes the full path to a script as an option:

learn-address /etc/openvpn/scripts/openvpnFW

In this example, the script openvpnFW will be executed each time a client is assigned an IP address and will
be passed three variables by the OpenVPN server process:

1. $1: The action taken; this may be one of add, delete, update
2. $2: The IP assigned to the client connecting

3. $3: The common name in the subject line of the client's certificate

Add the line learn-address /etc/openvpn/scripts/openvpnFW to your OpenVPN server configuration file
and edit the file /etc/openvpn/scripts/openvpnFW to be like the following. These lines will show how to
make use of these parameters in a short Linux shell script:

#!/bin/sh

LOGFILE=

DATE="/bin/date”
echo $DATE $1 $2 $3 >> $LOGFILE

This script will only export the variables passed to the logfile, including a timestamp that is added by the
command date. Stop and start your tunnel a few times. Now let's have a look at the file
/var/log/openvpn/connections.log:

Mi Feb 1 04:33:53 CET 2006 update 10.99.0.3 mfeilner
Do Feb 2 04:34:33 CET 2006 update 10.99.0.3 mfeilner
Fr Feb 3 04:34:14 CET 2006 update 10.99.0.3 mfeilner
Sa Feb 4 04:34:53 CET 2006 update 10.99.0.3 mfeilner
So Feb 5 04:34:43 CET 2006 update 10.99.0.3 mfeilner

This example shows a VPN client reconnecting every day. This alone might yet be an interesting feature, if
you want to keep track of your users and their VPN connections. However, we can do more. Let's add some
more lines to our openvpnFW script:

if [$1 = add]

then

/etc/openvpn/scripts/$2.FW connect.sh
fi

if [$1 = delete]

then
4¢tc/0penvpn/scripts/$2.FW_disconnect.sh
i

Two simple tests are run and, depending on the content of the variable $1, different firewall scripts are
executed. Let's express this in brief. If the first variable passed is add, then the script
/etc/openvpn/scripts/$2.FW_connect.sh is run, where $2 will be replaced by the IP of the client connecting.
If for example a client mfeilner connects and is assigned the IP 10.99.0.3, then the variables passed to this
script openvpnFW will be:

add 10.99.0.3 mfeilner
And the script run will be called: /etc/openvpn/scripts/10.99.0.3.FW_connect.sh

However, if the variables passed to openvpnFW are the following:
delete 10.99.0.3

then the script /etc/openvpn/scripts/10.99.0.3.FW_disconnexill bk executed.

You would have already guessed that these two scripts contain firewall rules (like iptablestatements) for
the client with the certificate mfeilner. Even though all of this could be done within one single script, it is
preferable to have the tests and firewall rules split up in several scripts.

This setup can become very powerful and fairly complex. A client that has its default route set through the
tunnel can be allowed selective Internet access, simply by enabling or disabling, routing or forwarding. And
access to the local servers can also be easily managed: e.g. A SAP server might only be available for
roadwarriors from 7 am to 6 pm, whereas during the night firewall rules protect the server.

Using a Client Configuration Directory with Per-Client
Configurations

Another striking feature of OpenVPN is the fact that we can have client configurations pushed through
the tunnel on creation and use client-specific configurations, which are simply set by the subject line of
the client's certificate. An appropriate server configuration file may look like the following:

port 443

dev tunOFIT

ca /etc/openvpn/certs/ca.crt

cert /etc/openvpn/certs/firewall.crt
key /etc/openvpn/certs/firewall.key
dh /etc/openvpn/certs/dh2048.pem
tls-auth /etc/openvpn/certs/ta.key 0
auth SHAl

cipher AES-256-CBC

tls-cipher DHE-RSA-AES256-SHA

server 10.179.0.0 255.255.0.0
ifconfig-pool-persist /etc/openvpn/ipp.txt
client-config-dir clients

keepalive 10 120

resolv-retry 86400

comp-1zo

status /var/log/openvpn/status.log
log /var/log/openvpn/main.log
tls-server

verb 3

There are three lines that are relevant in this context:

1. server 10.179.0.0 255.255.0.0: This tells OpenVPN on this machine to act as a server and
automatically distribute IP addresses to clients connecting.

2. 1ifconfig-pool-perststopenvpn/ipp.txt: This makes OpenVPN keep a list of certificate to IP
relationships, so that a client connecting will (probably) always have the same IP.

3. client-config-dients: This has OpenVPN look in the directory "clients" for a client-specific
configuration file when a client connects.

A client configuration file must have a name matching the CN in the Subject line of the certificate. If a
client connects with a certificate containing the following subject:

(...)
Subject: C=DE, ST=Bayern, L=Regensburg, O=Feilner-IT,
CN=mfeilner/emailAddress=mfeilner@feilner-it.net

(...)
Then the server will look if the directory clients contain a configuration file named mfeilnerThis file may
contain push options like the following:

ifconfig-push 10.179.0.3 10.179.0.4
push "route 10.1.0.0 255.255.0.0"

In this scenario, this client will always have the IP address 10.179.0.3nd is told about a network (10.1.0.0)
behind the tunnel. Thus, if we use different client configurations, we can control the routing and network
configuration for every client. It's simple to grant access to the network by activating or deactivating a client's
routing on connecting, but we must always remember that this offers no real protection, because every local
administrator could also activate this routing on the client.

On the client configuration, the parameter clientnust be present. If we want to have the client redirect
its default gateway through the tunnel, we simply need to add the parameter redirect-gateway.

Redirecting the client's default gateway is another excellent feature of Open VPN, especially when combined
with HTTP-proxy tunneling. The parameter redirect-gatewagauses three steps:

A static route to the other tunnel partner is created.
The old default gateway is deleted.
3. A new entry for the default gateway is created (pointing to the IP address of the other tunnel
endpoint).
Of course we can enter these steps manually, if we like. The routecommand will help us here:

debian@l:~# route add 172.16.103.2 gw 172.16.247.1
debian@l:~# route del default

debian@l:~# route add default gw 10.179.10.2
debian@l:~# route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.103.2 172.16.247.1 255.255.255.255 UGH 0 0 0 etho
10.179.10.2 0.0.0.0 255.255.255.255 UH 0 0 0 tunVPNO
172.16.247.0 0.0.0.0 255.255.255.0 U 0 0 0 etho
172.16.76.0 10.179.10.2 255.255.255.0 UG 0 0 0 tunVPNO
192.168.250.0 0.0.0.0 255.255.255.06 U 0 0 0 ethl
0.0.0.0 10.179.10.2 0.0.0.0 uG 0 0 0 tunVPNO
debian0l:~#

First, we added a static route to the VPN partner (routeadd 172.16.103.2 gw 172.16.247.1). Then we
deleted the old default route (route del default), and as a last step we created the new default route with
route add default gw 10.179.10.2. From this moment on, all traffic not destined to the VPN partner's public
IP will be routed through the tunnel, as the output of route -n will show. Because the routing entries will be
useless when the VPN partner's IP changes, it is a good idea to have OpenVPN set the routing for us.

Using Authentication Methods

OpenVPN can be used with authentication based on shared secrets (static keys) and X.509 certificates.
Another useful option for authentication is authentication plug-ins called with the configuration parameter
auth-user-pass-veriwhich can be used together with both methods mentioned before. For example, in a
certificate-based VPN, we can use an authentication plug-in to make sure that only a user knowing the
appropriate username/password combination can start the tunnel. This may be a convenient additional level
of security for laptops or other roadwarrior machines.

While certificates in this context tend to protect and authenticate machines rather than users,
username/password combinations are useful for VPNs that are started by a human. The Windows GUI will
pop up a small authentication window where the user must enter a username and password. The VPN client
takes these values and sends them to the VPN server, which starts the plug-in program (as configured in
auth-user-pass-venitfyvalidate the combination. If the authentication program returns an OK,
authentication was successful, and the tunnel is created. The tunnel will only be established if the password
is correct.

For this purpose, the following configuration parameters must be added: In the server configuration file,
add auth-user-pass-verify /path/to/your/autty youiptrver configuration and auth-user-pass to your
client's configuration. The following table shows the usage of these parameters:

Parameter Allowed options Usage Function
--auth-user-pass- <script> Server Activates server's authentication and
verify <method> configuration defines the name of the authentication

script and the method to use for
username/password handling

--auth-user-pass <file> Client Activates client's authentication and
configuration optionally defines a file where
username and password are stored

On SuSE systems there are some example scripts (like auth_pam.p?) provided with OpenVPN, which can
be found in /usr/share/doc/packages/openvpn/sample-scripts. But a typical scenario for such an
authentication may be a local LDAP server. LDAP is the system-independent state of the art for all modern
directory services both in open-source servers and also in Microsoft's Active Directory Service. The
following overview will give you some hints on how to create an authentication plug-in using your own
LDAP authentication for OpenVPN.

On a Linux system with the LDAP client tools installed, the command ldapwhoami can be used for testing
username/password pairs against an LDAP server. In the following examples the LDAP server is
10.10.10.1, the user mfeilner, and the password is correct_password. The string uid=mfeilner,ou=Feilner-
it_Users,dc=feilner-it,dc=home must be adapted to the settings on your LDAP server. Here is the output of
the Idapwhoami command:

suse0l:/var/log # ldapwhoami -x -h 10.10.10.1 -D uid=mfeilner,ou=Feilner-

it Users,dc=feilner-it,dc=home -w correct password
dn:uid=mfeilner,ou=Feilner-it Users,dc=feilner-it,dc=home

suse0l: # ldapwhoami -x -h 10.10.10.1 -D uid=mfeilner,ou=Feilner-it Users,dc=feilner-
it,dc=home -w wrong password
ldap bind: Invalid credentials (49)

The first command will give a return code of "0", whereas the second command, resulting in a failed
authentication returned a value of "1".

This article is written by Markus Feilner, author of the book OpenVPN: Building and Integrating Virtual
Private Networks by Packt Publishing.

For further details please visit http://www.packtpub.com/openvpn/book

Markus Feilner is a Linux author, trainer, and consultant from Regensburg, Germany, and has been working
with open-source software since the mid 1990s. His first contact with UNIX was a SUN cluster and SPARC
workstations at Regensburg University (during his studies of geography). Since the year 2000, he has
published several documents used in Linux training all over Germany. In 2001, he founded his own Linux
consulting and training company, Feilner IT (http://www.feilner-it.net). Furthermore, he is an author,
currently working as a trainer, consultant, and systems engineer at Millenux, Munich, where he focuses on
groupware, collaboration, and virtualization with Linux-based systems and networks. He is interested in
anything about geography, traveling, photography, philosophy (especially that of open-source software),
global politics, and literature, but always has too little time for these hobbies.

http://www.feilner-it.net/

	Advanced OpenVPN Configuration
by Markus Feilner
	Individual Firewall Rules for Connecting Clients
	Using a Client Configuration Directory with Per‑Client Configurations
	Using Authentication Methods

